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Biomass equations for forest regrowth in the eastern 
Amazon using randomized branch sampling
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ABSTRACT
Forest regrowth occupies an extensive and increasing area in the Amazon basin, but accurate assessment of the impact of 
regrowth on carbon and nutrient cycles has been hampered by a paucity of available allometric equations.  We develop pooled 
and species-specific equations for total aboveground biomass for a study site in the eastern Amazon that had been abandoned 
for 15 years.  Field work was conducted using randomized branch sampling, a rapid technique that has seen little use in tropical 
forests.  High consistency of sample paths in randomized branch sampling, as measured by the standard error of individual 
paths (14%), suggests the method may provide substantial efficiencies when compared to traditional procedures.  The best 
fitting equations in this study used the traditional form Y=a×DBHb, where Y is biomass, DBH is diameter at breast height, 
and a and b are both species-specific parameters.  Species-specific equations of the form Y=a(BA×H), where Y is biomass, 
BA is tree basal area, H is tree height, and a is a species-specific parameter, fit almost as well.  Comparison with previously 
published equations indicated errors from -33% to +29% would have occurred using off-site relationships.  We also present 
equations for stemwood, twigs, and foliage as biomass components.
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Equações alométricas para estimativa de biomassa de floresta secundária 
na Amazônia Oriental usando amostragem aleatória de ramos
RESUMO
Florestas secundárias ocupam uma área extensa e crescente na bacia Amazônica, porém determinações acuradas do impacto 
dessas florestas nos ciclos de carbono e nutrientes têm sido dificultadas pelo número reduzido de equações alométricas.  Neste 
estudo, nós desenvolvemos equações em nível de comunidade e espécies individuais para estimar a biomassa total da parte 
aérea de uma floresta secundária com 15 anos de idade na Amazônia oriental.  O trabalho de campo utilizou amostragem 
aleatória de ramos, que é uma técnica rápida, porém pouco utilizada em florestas tropicais.  Baseada no erro padrão da série 
de segmentos individuais (14%), a consistência da série de segmentos totais amostrados foi considerada elevada, sugerindo 
que o método pode ser eficiente em comparação com procedimentos tradicionais. Os melhores ajustes foram obtidos com a 
equação tradicional Y=a×DBHb, onde Y é a biomassa, DBH é o diâmetro à altura do peito, e a e b são parâmetros para cada 
espécie arbórea. Ajustes razoáveis também foram alcançados com equações da forma Y=a(BA×H), onde Y é a biomassa, BA é 
a área basal, H é a altura e a é um parâmetro específico para cada espécie arbórea.   Comparações com equações disponíveis 
na literatura indicaram uma faixa de erro provável de -33% a +29% usando-se relações desenvolvidas para outros sítios.  Nós 
também apresentamos equações para os seguintes componentes da biomassa da parte aérea: tronco, ramos e folhas.
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IntroductIon
Approximately 650,000 km2 of old-growth forest in the 

Brazilian Amazon has been cleared within the past 25 years 
(Brazil INPE, 2004), and between 30% and 50% of this area is 
in some stage of abandonment and regrowth (Fearnside, 1996; 
Houghton et al., 2000).  Forest regrowth occupying much of 
this land area are of significant ecological interest in their own 
right (Uhl et al., 1988; Buschbacher et al., 1988; Mesquita et 
al., 2001), and contribute to large-scale biogeochemical and 
atmospheric cycles (Fearnside & Guimarães, 1996; Houghton 
et al., 2000; Steininger, 2004).

Tropical forest regrowth contains complex mixtures of 
tree species (Uhl et al., 1988; Mesquita et al., 2001), and 
there is considerable variation in species composition of 
regrowth stands across this large region (Baar et al., 2004).  
However, few species-specific allometric equations have been 
published (Uhl et al., 1988; Saldarriaga et al., 1988; Nelson et 
al., 1999).  Most studies on biomass or carbon increment in 
Amazonian forest regrowth rely on mixed-species equations 
(such as those developed by Uhl et al., 1988; Saldarriaga et 
al., 1988, and Honzák et al., 1996 using data from Brown et 
al., 1989).  However, Nelson et al. (1999) report considerable 
discrepancies between the predictions of these equations, 
suggesting considerable error may remain when using existing 
mixed-species regressions in new sites.

Tropical forests present special challenges for developing 
accurate biomass equations.  Because even a small area may 
contain a relatively large number of species, many trees must 
be measured to develop an adequate set of equations.  It 
would be especially advantageous in this situation to be able 
to measure each tree as efficiently as possible, so that many 
trees can be measured.  One approach is to reduce the portion 
of the tree that must be processed by using a subsampling 
method.  Randomized branch sampling (RBS, Gregoire et 
al., 1995) has been proposed and theoretically investigated, 
but there are few published reports of its use.

Here, we report the results of an aboveground biomass 
study in forest regrowth in the eastern Amazon.  Our goals 
were (1) to develop species-specific allometric equations 
for several species not represented in previously published 
studies, using randomized branch sampling, a well-described 
methodology for tree allometry not previously applied in 
tropical forest regions; (2) to develop mixed-species equations 
appropriate for forest regrowth of similar species composition; 
and (3) to compare our equations with previously published 
equations to assess which, if any, equations might prove 
portable across forest regrowth regionally.

MAtErIAL And MEtHodS

StUdy SitE

The study was carried out at the field station of the 
Federal Rural University of Amazonia (UFRA: 1º17’46” S and 
45º55’28” W) near the city of Castanhal, in the Bragantina 
Region of Pará, Brazil. The Bragantina Region is distinguished 
from other Amazon regions by the predominance of secondary 
vegetation, resulting from constant human occupation 
since the rubber boom at the beginning of the 20th century 
(Ludovino, 2001). Previously covered by humid tropical forest 
with a dense canopy, the study area was first cleared around 
1940. Corn and manioc were the main crops of the slash-and-
burn agriculture in the area. After six to eight cycles of slash 
and burn, the area was abandoned and allowed to regrow for 
the past 15 yrs. Mean annual temperature is 26°C, average 
relative humidity is 80%, and mean annual precipitation is 
2500 mm. A dry season extends from July to December with 
2 to 5 months with total rainfall less than 100 mm according 
to data registered from the National Agency of Electrical 
Energy (ANEEL) network meteorological station at Castanhal 
(01o17’53’’S, 47o56’56’’W), which was about 3 km away 
from our study site.  The predominant soil type is dystrophic 
yellow latosol, stony phase I, in the Brazilian classification 
(Tenório et al., 1999), corresponding to Sombriustox in 
U.S. soil taxonomy. Soils are well-drained and shallow to 
laterite. Predominant botanical families are Lacistemataceae, 
Clusiaceae, and Myrtaceae. 

FIELd And LAborAtory MEtHodS
All trees > 1.0 cm diameter at breast height (DBH) on two 

0.01 ha study plots were destructively sampled.  In addition, 
for two taxa (Vismia guianensis and Stryphnodendron sp.), 
2-3 additional trees selected from the area around the plots 
were also sampled to extend the size range for the allometric 
regressions.

Before felling, DBH and total height (to the tallest point 
on the tree) were measured on each tree.  DBH was measured 
using a diameter tape on trees with DBH >5cm, and using 
calipers for smaller trees.  However, the differences between 
diameter measurements using the two techniques are practically 
and statistically negligible; DBH as measured using a diameter 
tape equals the average of all possible caliper measurements 
(Matérn, 1956).  Height was measured using a telescoping 
range pole.  Total height was also measured immediately after 
felling using a fiberglass tape.  Then, we employed randomized 
branch sampling (Jessen, 1955; Gregoire et al., 1995) to 
subsample each tree and develop design-unbiased estimates 
of total biomass and its components.
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Briefly, randomized branch sampling decomposes a tree 
into a finite collection of paths composed of individual 
segments.  Each path connects the base of the tree to a 
terminating branch.  A segment is the portion of a path 
that runs between two ramifications.  Sampling begins at 
the base of the tree; the segment running from the base to 
the first ramification is sampled with probability equal to 
1.  All material associated with that segment is processed 
to determine volume and biomass components (described 
below).  At the ramification, one must choose which segment 
to take.  We measured the basal diameter of each segment at 
the ramification, and used a field computer to select a segment 
with probability proportional to basal diameter raised to the 
2.67 power; this selection probability has been suggested as 
nearly optimal for total biomass (Gregoire et al., 1995).  All 
material associated with this new segment is processed, and 
the selection process repeats at the ramification terminating 
the segment.  This procedure is repeated until one reaches 
a terminal branch.  The probabilities of selection at each 
ramification (the conditional probabilities; Gregoire et al., 
1995) are recorded, and collectively they define a probability 
sample through the set of possible paths on the tree.  Each 
segment is expanded by its unconditional probability, i.e. the 
product of the conditional probabilities of each selection at 
preceding ramifications, to form a design-unbiased estimator 
of the total of an attribute in the tree, based on the same 
attribute measured in each segment in the path (Gregoire et 
al., 1995).  Only one path is needed to develop an estimate 
for the tree.  To estimate the standard error for an individual 
tree, multiple paths must be selected; this was done on 6 trees 
to evaluate the accuracy of the sampling scheme.

For each segment, we divided the plant material into five 
categories for processing:

1. Stemwood.  We defined stemwood as all live woody material 
(including bark) with an outside bark diameter > 1.0cm.  
If a lateral branch arose from the segment with diameter 
> 1.0 cm, that constituted a ramification and the segment 
terminated at the branch base.  Lateral branches with 
diameter < 1.0 cm were defined as twigs (see below).  If the 
diameter fell below 1.0 cm before reaching a ramification 
(i.e. the stem became a twig), or if no branch > 1.0 cm arose 
from the segment, the segment was considered a terminal 
branch.  (For very small trees, with no branches > 1.0 cm, 
this means the initial segment was also a terminal segment, 
so the entire tree was processed.)  For each stemwood 
segment, we measured the length, basal diameter, and 
diameter at the terminating ramification.  After separating 
other biomass components (see below), the entire segment 
was cut and weighed wet in the field.  For very small 
segments, the entire segment was returned to the lab for 
dry weight determination; otherwise, a “cookie” subsample 

was removed from the midpoint of the segment, weighed 
in the field for wet weight, and returned to the lab for dry 
weight measurement.

2. Twigs.  All live woody material, including bark, < 1.0 cm in 
diameter was considered as twigs.  All twigs were collected 
from each selected segment and wet weight was determined 
in the field.  For most segments, the entire collection of 
twigs was returned to the lab for dry weight determination; 
for a few segments with very large twig volumes, an arbitrary 
subsample of twigs was taken, its wet weight recorded, 
and the subsample was returned to the lab for dry weight 
measurement.

3. Dead branches and twigs.  Dead woody material was 
associated with the segment from which it arose, without 
respect to diameter.  Dead woody material was separated 
from the live wood by visual inspection and by testing for 
flexibility, its wet weight was determined, and either the 
entire dead branch or a subsample taken from its midpoint 
(also weighed wet in the field) was returned to the lab for 
dry weight measurement. 

4. Foliage.  Foliage was separated from the branches and twigs 
of a segment.  All foliage associated with a segment was 
weighed wet in the field.  If the volume of foliage was small 
(approximately a liter or less), all the foliage was returned 
to the lab.  Otherwise, the foliage was mixed well, and a 
grab sample was taken for wet weight measurement in the 
field and dry weight measurement in the lab.

5. Seeds and fruits.  These components were rare.  They were 
treated separately from, but similar to, foliage.

All collected material was bagged and tagged to identify 
the tree, path number, and segment number from which it 
arose.  Samples were returned to the lab within 12 hours, 
placed in an oven at 65oC, and dried until the residual weight 
was stable (at least 24 hours, but generally longer for large 
woody samples).  Nogueira et al. (2005) report a statistically 
significant but small (less than 2%) difference in wood density 
estimates when higher oven temperatures (e.g. 103 oC ) are 
used for large woody samples; those differences should be 
borne in mind when comparing these results to those from 
similar studies.  Dry weight was determined using a calibrated 
electronic balance to a precision of 0.1 g.

The total dry weight for a segment was determined as 
the sum of the dry weights of its components.  Where a 
component was subsampled for dry weight determination, 
the total dry weight of that component was estimated as the 
field-measured wet weight for the total material, multiplied 
by the dry weight to wet weight ratio of the subsample.  Dry 
weights for the segments were then multiplied by the inverse of 
the unconditional selection probabilities for each segment, and 
summed to estimate the total dry mass of the tree (Gregoire 
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et al., 1995).  Volume for each segment was calculated using 
Smalian’s formula (V=L(A+a)/2, where V is volume, L is 
length, and A and a are the large and small end cross-sectional 
areas, respectively). The volumes were not used directly in 
biomass estimation, but were used to assist in error checking 
the dry weights.  Volume of the basal segment, in association 
with the dry woody biomass of the basal segment, was also 
used to develop specific gravity for each tree as a covariate in 
allometric equation development.

StAtiSticAl ANAlySiS

We evaluated a series of allometric models predicting total 
aboveground biomass as a function of commonly measured 
variables including DBH and total height, as well as wood 
density.  The first set of models did not include separate 
coefficients for different species or taxa, but treated the entire 
population as a single group.  The second set included separate 
coefficients for each species with five or more individuals in the 
sample, treating all other species as a pooled “other” group.

We considered several candidate models for predicting the 
total aboveground biomass of trees (Y) without estimating 
species-specific parameters.  These included two models 
employing tree basal area (BA, m2), tree height (H, m; we used 
height as measured before felling, not length measured after 
felling, to predict biomass), and a measure of wood specific 
gravity:  either specific gravity as estimated from the basal 
segment of that tree (SG), or the median basal specific gravity 
for the species (MSG).  The models in this class were

Model 1.  Y=β
0
(SG×BA×H)β1

Model 2.  Y=β
0
(MSG×BA×H)β1

In many applications, no specific gravity information is 
available.  A model with similar form, relying only on tree 
dimensions, is

Model 3.  Y=β
0
(BA×H)β1

However, use of this model requires measurement of 
tree height.  Perhaps the most common allometric equation 
form is

Model 4.  Y=β
0
DBHβ1

where DBH is diameter at breast height in cm.  Although 
it is dimensionally consistent with the notion that much of the 
aboveground biomass of a tree comes from the stem volume, 
some object to forms such as Model 3 because the exponents 
on BA (or DBH) and H cannot vary independently.  We 
also tested

Model 5.  Y=β
0
×DBHβ1×Hβ2

Conversely, if the bulk of aboveground biomass does come 
from stem volume, then the additional exponent β

1
 in Models 

1, 2, and 3 may be considered unnecessary, and might lead to 
poor extrapolation even within the close vicinity of the original 

data range.  We also tested the following simple models with 
only a single estimable parameter:

Model 6.  Y=β
0
(SG×BA×H)

Model 7.  Y=β
0
(MSG×BA×H)

Model 8.  Y=β
0
(BA×H)

It is often tempting to deal with expected heteroscedasticity 
(and at the same time avoid nonlinear regression) by fitting 
Models 1-5 after log transformation.  However, this introduces 
a bias into resulting estimates, and complicates cross-
comparison with models in the original scale.  We employed 
nonlinear regression, estimating both the model parameters, 
and the parameters of a variance function, by direct maximum 
likelihood.  For all models, the variance of individual data 
about the expected value was estimated as a function of the 
predicted value, with two additional parameters: 

Variance:  s2=γ
0
Yγ1

This equation for the variance allows broad flexibility in 
modeling the heteroscedasticity directly, while using only 
one parameter more than would be needed when incorrectly 
assuming homoscedasticity.  Each model thus required 
estimating 3-5 parameters:  β

0
 (and possibly β

1
 and β

2
), as well 

as γ
0
 and γ

1
.  Model selection was based on the small-sample, 

second-order corrected AIC
c
 information criterion (Akaike, 

1974; Sugiura, 1978; Hurvich & Tsai, 1989).  AIC
c
 stands for 

“an information criterion,” or “Akaike information criterion,” 
while the c in the subscript indicates a small-sample correction.  
AIC

c
 is calculated from the log-likelihood as

where ln(L) is the log-likelihood of the model, K is the number 
of parameters (including parameters associated with the 
variance), and n is the number of observations.  Low values 
of AIC

c
 are considered desirable; particular values of AIC

c
 are 

not meaningful in isolation, but differences in AIC
c
 between 

models (∆AIC
c
) are (Burnham and Anderson 2002).  Model 

selection using AIC
c
 is preferable to model selection using 

p-values, because the goal is to select an appropriate predictive 
model, not to test a straw null hypothesis (Burnham & 
Anderson, 2002).  Although Burnham and Anderson (2002) 
warn against it, we also report pseudo-R2 (also called model 
efficiency) and root mean square error here; these are reported 
for informational purposes only, and should not be used as 
model selection criteria in the presence of heteroscedasticity.  
We also caution that pseudo-R2 values should not be used to 
compare allometric equations developed in different studies 
from different data sets because, just as in linear regression, 
the statistic depends strongly on the range and variability of 
the specific data set (Kvålseth, 1985).
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We also fit a series of individual species or taxon models; 
individual species models are often considered to be more 
accurate in ecological work.  We considered this not as a 
given but as a testable proposition.  We fit a series of models, 
comparable in form to those used for the grouped equations.  
Specifically, we fit Models 1, 3, 4, 5, 6, and 8 as outlined 
above, but allowing separate parameters for each taxon. The 
median specific gravity term in Models 2 and 7 is uniform 
for a taxon, so these models are redundant.  We employed 
the same heteroscedasticity assumption and variance model 
as before, allowing the two parameters of the variance model 
also to vary by taxon.  Thus, each model required estimating 
3-5 parameters per taxon.  We fit separate models for seven 
species, and one additional group comprising all other species 
combined.  We used an overall AIC

c
 to compare among 

equation forms, both within the taxon-specific series and with 
the multispecies models.  The overall AIC

c
 was calculated 

from the joint log-likelihood of the models in a group, 
using the combined sample size and combined number of 
parameters (3-5 parameters for each of 8 taxa).  As before, we 
report pseudo-R2 and root mean squared error values, though 
these would be misleading in model selection due in part to 
the heteroscedasticity and in part to the varying number of 
parameters between models.

To compare the selected models with this study with 
those from previously published studies (Uhl et al., 1988; 
Nelson et al., 1999), we estimated the aboveground biomass 
for each sampled tree using the equations developed here 
and the previously published equations.  Differences were 
assessed graphically, and the models were also compared for 
median percent error and median absolute error for each tree.  
Recognizing that the primary goal of biomass campaigns is 

usually to estimate total biomass for a population of trees, 
rather than for individual trees, we also assessed overall error 
for the sum of the individual biomasses of the trees on the 
sample plots.  We emphasize that we did this not to determine 
which set of equations is “right” in some global sense, but to 
test which (if any) model forms might prove portable across 
sites.  Our working hypothesis was that models including 
measures other than DBH (such as SG or H) would better 
account for regional variability in tree form and stand 
composition, and would prove more portable.

The emphasis of this manuscript is on allometric equations 
for predicting total biomass.  However, the data collected 
in this study are also suitable for developing equations for 
biomass components.  We present equations for stemwood, 
twigs, and foliage in Appendix I.

rESuLtS
Characteristics of the sampled trees are summarized in 

Table 1.  In total, 82 trees were sampled; 77 trees represented 
21 identifiable taxa while 5 trees could not be identified.  

Variability of randomized branch sampling, for the six 
trees where two paths each were sampled, is shown in Table 
2.  The maximum difference between two estimates was 39%, 
but this was not typical.  The pooled relative standard error of 
estimate calculated for these trees is 13.7%.  Note furthermore 
that this would be an overestimate of the sampling variability 
as applied to the total population; for many trees, there were 
no branches > 1.0 cm emanating from the first segment, so 
the entire tree was sampled and there is no sampling error.  An 
increase in sampling error for larger trees does, however, add 
to the natural heteroscedasticity expected for tree biomass.

table 1 - characteristics of the sampled trees.  taxa with fewer than five trees were not analyzed individually, but placed in the “all other taxa” group.  Median 
specific gravity of the “all other taxa” group was 0.591.

Species n SG
dBH (cm) H (m) Biomass (kg)

min max min max min max
Abarema jupunba 5 0.606 5.0 8.8 6.0 8.2 4.754 27.568
Banara guianensis 1 0.591 1.9 1.9 4.7 4.7 0.816 0.816
Casearia javitensis 4 0.581 1.4 7.4 3.8 8.1 0.492 21.633
Cupania scrobiculata 1 0.674 1.0 1.0 3.0 3.0 0.181 0.181
Guatteria poeppigiana 1 0.304 2.8 2.8 7.3 7.3 1.123 1.123
Inga flagelliformis 1 0.577 4.1 4.1 5.7 5.7 4.303 4.303
Lacistema aggregatum 3 0.640 1.3 3.9 3.2 5.8 0.401 3.421
Lacistema pubescens 15 0.564 1.1 6.4 2.7 7.0 0.285 22.073
Maquira guianensis 2 0.533 1.2 3.1 3.1 5.8 0.310 1.824
Myrcia bracteata 1 0.851 1.2 1.2 3.2 3.2 0.415 0.415
Myrcia sylvatica 8 0.757 1.2 4.8 2.2 9.6 0.203 13.639
Nectandra cuspidate 3 0.475 5.5 10.4 8.0 10.5 10.081 34.306
Neea glomerulifolia 3 0.855 1.2 3.1 2.4 4.3 0.320 2.173
Neea tamimbuca 1 0.442 1.1 1.1 2.3 2.3 0.318 0.318
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A comparison of the mixed-species models, as fit to all taxa 
combined, is shown in Table 3.  The best model was Model 
2; its AIC

c
 of 314.3 constitutes the benchmark against which 

other models in this group should be judged.  Somewhat 
surprisingly, Model 2 uses the median specific gravity for a 
taxon, rather than the specific gravity as measured from the 
basal segment of the subject tree.  The individual-tree specific 
gravity is, however, subject to measurement error which can 
propagate to estimates of biomass.  The second-best model, 
Model 7, also employs median specific gravity but is a ratio 
model, shedding the potentially destabilizing exponent.  Its 
AIC

c
 of 316.1 differs from the best AIC

c
 by ∆AIC

c
=1.8.  This 

value falls within the range of 0-2 interpretable as providing 

“substantial” support for the model (Burnham & Anderson, 
2002, p. 70).

Specific gravity information is not always available in 
field studies.  The three best-performing mixed species 
models that do not include specific gravity are models 3, 5, 
and 6, in that order.  The AIC

c
 of Model 3, 322.6, yields a 

∆AIC
c
=8.3, somewhere between “considerably less” support 

and “essentially none” in the terminology of Burnham & 
Anderson (2002).  Nonetheless, this is a simple model that 
might be useful when height measurements are feasible but 
little other information is available.  The most common form 
of allometric model, Model 4, has a dismal  ∆AIC

c
=24.3 and 

is essentially unsupported as a model form for use with mixed 
species in this context.

An overview of the species- or taxon-specific models, 
including their pooled AIC

c
 values, is given in Table 4.  The 

construction of these pooled AIC
c
 models allows direct 

comparison with the mixed-species models reported in Table 
3.  The best taxon-specific model form is the traditional 
power function of DBH, Model 4.  Parameters for the eight 
taxonomic groups, along with model performance and the 
shape of the variance function, are shown in Figure 1.  This 
model substantially outperforms the best mixed-species 
models, including those that require density information.  
This equation has the advantage and disadvantage of using the 

Species n SG
dBH (cm) H (m) Biomass (kg)

min max min max min max
Ocotea guianensis 8 0.516 5.0 18.4 7.7 18.0 5.692 197.659
Poecilanthe effuse 10 0.835 1.1 6.9 3.2 7.3 0.339 26.570
Stryphnodendron pulcherrimum 1 0.611 21.4 21.4 11.2 11.2 262.346 262.346
Tapirira guianensis 1 0.362 5.1 5.1 8.2 8.2 4.533 4.533
Talisia longifolia 1 0.933 3.0 3.0 4.0 4.0 2.869 2.869
Vismia guianensis 6 0.585 1.5 5.0 4.6 6.4 0.671 7.832
Vochysia inundata 1 0.439 5.7 5.7 7.0 7.0 11.581 11.581
Unidentifiable taxa 5 0.591 1.0 3.6 2.4 7.3 0.249 3.550

table 1 - continuation

table 2 - comparison of biomass estimates for trees on which two randomized 
branch sampling paths were measured.  Estimated biomass for a tree is the 
average of the estimates calculated for the two paths.  Percent difference is 
calculated from the two estimates as  100(max-min)/average.

Species
dBH, 
cm

H, m
Estimated 
Biomass, kg

Percent 
difference

Myrcia sylvatica 4.0 9.6 12.7 14.2
Nectandra cuspidate 10.4 10.5 34.3 39.0
Ocotea guianensis 5.0 7.7 5.7 19.8
Ocotea guianensis 6.6 8.7 13.8 1.5
Stryphnodendron sp. 21.4 11.2 262.3 12.4
Vismia guianensis 5.0 5.5 7.8 0.4

table 3 - Mixed-species allometric equations.  y is estimated biomass (kg), SG is individual-tree specific gravity, MSG is median specific gravity for the species 
or group, BA is basal area (m2), H is tree height (m), and dBH is diameter at breast height (cm).  Variance reflects the spread of individual trees about the 
predicted curve.  r2 and RMSE are shown for informational purposes only; neither is an apt goodness-of-fit criterion, because both assume homoscedastic 
data.  low values of Aicc  indicate better model performance.

Equation Variance r2 RMSE Aicc

Model 1 y=736.5(SG×BA×H)0.9331 s2=0.5698y1.316 0.95 0.87 319.3
Model 2 y=770.8(MSG×BA×H)0.9460 s2=0.5110y1.358 0.96 0.82 314.3
Model 3 y=387.8(BA×H)0.8916 s2=0.4032y1.583 0.92 1.11 322.6
Model 4 y=0.2237×dBH2.260 s2=0.4880y1.549 0.97 0.68 338.6
Model 5 y=0.0985×dBH1.879×H0.7355 s2=0.4154y1.552 0.94 0.98 323.3
Model 6 y=929.3(SG×BA×H) s2=0.8520y1.194 0.96 0.77 323.8
Model 7 y=938.8(MSG×BA×H) s2=0.7024y1.241 0.97 0.72 316.1
Model 8 y=569.4(BA×H) s2=0.7912y1.356 0.92 1.12 333.1



 355 vol. 39(2) 2009: 349 - 360    Ducey et al.

Biomass equations for forest regrowth in the eastern Amazon 
using randomized branch sampling

least information (other than taxonomic identity and DBH) 
of any model.  A concern with models of this form is that 
extrapolation outside the measured range of DBH can be poor.  
Moreover, shifts in the relationship between DBH, height, and 
biomass can occur between secondary forest sites.

The second best model, Model 8, is a very simple ratio 
model that requires tree height in addition to tree basal area (or 
DBH).  Parameters for the eight taxonomic groups, along with 
model performance and the shape of the variance function, are 
shown in Figure 2.  This model also outperforms the mixed-
species models, including those with density information.  For 
this model, relative to the taxon-specific Model 4, ∆AIC

c
=9.9, 

or somewhere between “considerably less” support and 
“essentially none” in the terminology of Burnham & Anderson 
(2002).  For sites similar to that of this study, the Model 4 
formulation would clearly be preferred.

A graphic comparison between the best mixed-species 
equations in this study, and the comparable equations of 
Uhl et al. (1988) and Nelson et al. (1999), is shown in Figure 
3.  Model 6 of Nelson et al., which requires specific gravity, 
tended to overpredict in relation to Model 2 of this study.  
All the other equations, including the equation of Uhl et al. 
employing specific gravity, and those of Nelson et al. using 
DBH with height or DBH alone, tended to underpredict 
for this data set.  The results are summarized numerically in 
Table 5.  The equations generated in this study often missed 

the aboveground biomass of individual trees by 19-25%.  
However, these errors were more or less evenly distributed, 
so that estimates of the total biomass of the sample (i.e., the 
plot-level biomass estimates) were within 5%.  Errors for 
individual trees using the off-site allometric equations were on 
the order of 30-40%, but much of this error was comprised 
of bias; errors for the total aboveground biomass were as great 
as 33%.  Contrary to expectations, the best performer among 
the off-site allometric equations was Model 2 of Nelson et al. 
(1999), which uses DBH alone.  Its error of 17% for plot-
level aboveground biomass estimates might still be judged 
unacceptable in some situations.

table 4 - Summary of the species- or group-specific allometric equations.  
y is estimated biomass (kg), SG is individual-tree specific gravity, MSG is 
median specific gravity for the species or group, BA is basal area (m2), H is 
tree height (m), and dBH is diameter at breast height (cm).  Parameters a, b, 
and c are fit individually for each species or group.  low values of Aicc indicate 
better model performance.

Equation Aicc

Model 1 y=a(SG×BA×H)b 311.2
Model 3 y=a(BA×H)b 313.0
Model 4 y=a×dBHb 279.1
Model 5 y=a×dBHb×Hc 385.4
Model 6 y=a(SG×BA×H) 290.6
Model 8 y=a(BA×H) 289.0

Figure 1 - individual species allometric 
equations using Model 4 (table 4). dashed 
lines indicate standard error of prediction for 
an individual stem, based on the maximum-
likelihood estimate of the variance in 
relation to the independent variable.
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Figure 2 - individual species allometric 
equations using Model 8 (table 4). dashed 
lines indicate standard error of prediction for 
an individual stem, based on the maximum-
likelihood estimate of the variance in relation to 
the independent variable.

Figure 3 - comparison of the performance of models from this study with 
previously published allometric models (see table 5 for equation forms). 
Solid line indicates exact agreement between equations. Note that graphs 
are on a logarithmic scale.



 357 vol. 39(2) 2009: 349 - 360    Ducey et al.

Biomass equations for forest regrowth in the eastern Amazon 
using randomized branch sampling

dIScuSSIon
The choice of an allometric model depends on the biological 

context and the sampling context, as well as the statistical 
properties of the model.  Unless one is prepared to conduct 
a site-specific allometric study, the stability of predictions 
across sites is a key question.  This is particularly important 
for forest regrowth; the height-diameter relationship, which is 
undoubtedly important for total aboveground biomass as well 
as biomass allocation, has long been known to vary with stand 
density and stand development (Oliver & Larson, 1996).

Viewed from this perspective, the second-best set of 
models in this study (taxon-specific models using Model 8, 
a simple ratio model employing tree basal area and height) 
seems to have much to offer.  The models incorporate species 
composition and differences in form using a single parameter, 
while the lack of an exponent means the estimates will scale 
linearly and safely for trees slightly outside the range of the 
data.  Gross extrapolation still remains dangerous, of course.  
In particular, very small trees (those shorter than breast height) 
may have zero basal area, but still have finite biomass.  Also, 
changes in tree form with increasing size are not accounted 
for if the single parameter remains constant.

A major objection to models such as Model 8 has been 
the use of tree height.  For example, Nelson et al. (1999, 
p. 166) note that telescoping height poles often provide 
underestimates of tree height in tropical forests.  They argue 
that tree height should only be used in allometric equations 
when it provides clear improvement in predictions, and 
when it can be measured accurately.  In this study, tree height 
measured before felling with a height pole averaged 5% less 
than length measured after felling with a tape (standard 
error of 1%).  Measurement variability added an additional 
9.7% random error (in the root mean square sense) to the 
bias.  Part of this “bias” is undoubtedly because height, rather 
than length, is measured in the field, and some trees lean; 

part is undoubtedly due to parallax and imperfect lines of 
sight.  However, both sources of error (bias and variance) are 
accounted for in the model fitting process.  If a small bias is 
relatively consistent between field crews, and a similar bias is 
present in the original fitting data, the impact is negligible.  
If height measurements were so variable as to be inherently 
unreliable, then adding height would not improve predictions 
even in the fitting data.  Still, the ability to measure heights 
accurately and consistently cannot be taken for granted, and 
it must be weighed against the possibility of error introduced 
by shifts in the height-diameter relationship.

With that said, the best set of models in this study did 
not employ tree height, but relied on DBH alone in concert 
with species or taxon identification.  In this, our results are 
similar to those of Nelson et al. (1999), who reported good 
fits with traditional power functions of DBH.  This study adds 
to the limited menu of taxon-specific allometric equations for 
Amazonian forest regrowth.  

The final result of this study, the general lack of agreement 
between locally-developed mixed species equations and other 
published equations, can only be viewed as discouraging.  
The previously published equations of Uhl et al. (1988) and 
Nelson et al. (1999) are not wrong; they are simply not right 
for this site.  Likewise, the mixed-species equations developed 
here may be found wanting when applied to other forest 
regrowth stands.  This remains true, apparently, even when 
specific gravity and tree height are accounted for in the models.  
The instability of allometric predictions across these sites 
indicates that additional work is needed to better understand 
the spatial variability in tree size – biomass relations.  The 
demonstrated efficiency of using randomized branch sampling 
for biomass allometry may permit more frequent development 
of site-specific equations than has previously occurred using 
traditional procedures.

table 5 - comparison with previously published allometric equations.  Models of Nelson et al. (1999) and Uhl et al. (1982) are shown with biomass, rather 
than ln(biomass), as the dependent variable to facilitate comparison.  Median error and median absolute error are calculated for individual trees; relative error 
of total describes the difference from the plot-level estimate calculated using the directly measured tree biomasses.

Source Equation Median Error (%)
Median Absolute 
Error (%)

Relative Error of 
total (%)

Models Requiring dBH (or BA), H, and MSG or SG
this Study, Model 2 y=770.8(MSG×BA×H)0.9460 2.0 18.9 -1.8
this Study, Model 7 y=938.8(MSG×BA×H) -11.2 23.9 2.0
Nelson et al.,  Model 6 y=0.2299×dBH2.1569×H0.3888×SG0.7218 36.9 39.7 28.6
Uhl et al. y=0.0514×(dBH2×H×SG)0.991 -40.4 41.2 -33.0
Models Requiring dBH and H
this Study, Model 3 y=387.8(BA×H)0.8916 9.4 23.9 -4.8
Nelson et al., Model 3 y=0.0804×dBH2.1400×H0.4644 -26.1 30.9 -23.9
Models Requiring dBH Only
this Study, Model 4 y=0.2237×dBH2.260 8.7 25.7 -4.4
Nelson et al., Model 2 y=0.1358×dBH2.4128 -21.0 32.1 -17.0



AcKnoWLEdGMEntS
We thank the students who participated in this study 

during biomass allometry field course held at the UFRA field 
station in 2002, Professor Izildinha Miranda for organizational 
support prior to and during the course, and Wilson J. Dias 
de Oliveira for assistance with sample processing. We also 
thank Moisés Mourão Jr. for text revision. This research 
was conducted under cooperative agreements between the 
University of Florida, UFRA, and the Empresa Brasileira de 
Pesquisa Agropecuária, and was supported by a grant from 
the Andrew Mellon Foundation.

LItErAturE cItEd
Akaike, H. 1974. A new look at the statistical model identification. 

IEEE Trans. Automatic Control, AC-19: 716-723.

Baar, R.; Cordeiro, M.R.; Denich, M.; Fölster, H. 2004. Floristic 
inventory of secondary vegetation in agricultural systems of 
East-Amazonia. Biodivers. Conserv., 13(7): 501-528.

Brazil, INPE. 2004. Monitoramento da floresta Amazônica brasileira 
por satélite – Projeto Prodes. (www.obt.inpe.br/prodes). Access: 
23/June/05. 

Brown, S.; Gillespie, A.J.R.; Lugo, A.E. 1989. Biomass estimation 
methods for tropical forests with applications to forestry 
inventory data. For. Sci., 35(4): 881-902.

Burnham, K.P.; Anderson, D.R. 2002. Model Selection and 
Multimodel Inference: a Practical Information-Theoretic Approach, 
2nd ed. Springer, New York, USA. 488pp.

Buschbacher, R.; Uhl, C.; Serrão, E.A.S. 1988. Abandoned pastures 
in eastern Amazonia. II. Nutrient stocks in the soil and 
vegetation. J. Ecol., 76(3): 682-699.

Diniz, T.D. de A.S. 1986. Caracterização climática da Amazônia 
Oriental, 3-13. EMBRAPA/CPATU-GTZ, Belém, Pará, 
Brazil.

Fearnside, P.M. 1996. Amazonian deforestation and global warming: 
carbon stocks in vegetation replacing Brazil’s Amazon forests. 
For. Ecol. Manage., 80(1): 21-34.

Fearnside, P.M.; Guimarães, W.M. 1996. Carbon uptake by 
secondary forests in Brazilian Amazonia. For. Ecol. Manage., 
80(1): 35-46.

Gregoire, T.G.; Valentine, H.T.; Furnival, G.M. 1995. Sampling 
methods to estimate foliage and other characteristics of individual 
trees. Ecology, 76(4): 1181-1194.

Honzák, M.; Lucas, R.M.; Amaral, I.; Curran, P.J.; Foody, G.M.; 
Amaral, S. 1996. Estimation of the leaf area index and total 
biomass of tropical regenerating forests: comparison of 
methodologies. pp. 365-381 In: Gash, J.H.; Nobre, C.A.; 
Roberts, J.M.; Victoria, R.L. (Eds.) Amazonian Deforestation 
and Climate. Institute of Hydrology, UK. 

Houghton, R.A.; Skole, D.L.; Nobre, C.A.; Hackler, J.L.; Lawrence, 
K.T.; Chomentowski, W.H. 2000. Annual fluxes of carbon from 
deforestation and regrowth in the Brazilian Amazon. Nature, 
403: 301-304.

Hurvich, C.M.; Tsai, C.-L. 1989. Regression and time series model 
selection in small samples. Biometrika, 76(2): 297-307.

Jessen, R.J. 1955. Determining the fruit count on a tree by 
randomized branch sampling. Biometrics, 11(1): 99-109.

Kvålseth, T.O. 1985. Cautionary note about R2. Am. Stat., 39(4): 
279-285.

Ludovino, R.M.R. 2001. Análise da diversidade e da dinâmica da 
agricultura familiar na Amazônia Oriental: O caso da Zona 
Bragantina. Ph.D. dissertation, Universidade Técnica de Lisboa, 
Instituto Superior de Agronomia, Lisboa, Portugal.

Matérn, B. 1956. On the geometry of the cross-section of a stem. 
Medd. Stat. Skogsforskn. Inst., 46(11). 28 pp.

Mesquita, R.C.G.; Ickes, K.; Ganade, G.; Williamson, B.B. 2001. 
Alternative successional pathways in the Amazon Basin. J. Ecol., 
89(4): 528-537.

Nelson, B.W.; Mesquita, R.; Pereira, J.L.G.; Souza, S.G.A. de; Batista, 
G.T.; Couto, L.B. 1999. Allometric regressions for improved 
estimate of secondary forest biomass in the central Amazon. For. 
Ecol. Manage., 117(3): 149-167.

Nogueira, E.M.; Nelson, B.W.; Fearnside, P.M.  2005.  Wood density 
in dense forest in central Amazonia, Brazil.  For. Ecol. Manage., 
208(1-3): 261-286.

Oliver, C.D.; Larson, B.C. 1996. Forest Stand Dynamics, update ed. 
Wiley, New York, NY, USA. 544pp.

Saldarriaga, J.G.; West, D.C.; Tharp, M.L.; Uhl, C. 1988. Long-term 
chronosequence of forest succession in the upper Rio Negro of 
Colombia and Venezuela. J. Ecol., 76: 938-958.

Steininger, M.K. 2004. Net carbon fluxes from forest clearance and 
regrowth in the Amazon. Ecol. Appl., 14(4): S313-S322.

Sugiura, N. 1978. Further analysis of the data by Akaike’s information 
criterion and the finite corrections. Comm. Stat. Theor. Methods, 
A7: 13-26.

Tenório, A.R.D.M.; Graça, J.J.D.C.; Góes, J.E.M.; Mendez, J.G.R.; 
Gama, J.R.M.F.; Silva, P.R.O.D.; Chagas, P.S.M.D.; Silva, 
R.N.P.D.; Américo, R.R.; Pereira, W.L.M. 1999. Mapeamento 
dos solos da estação de piscicultura de Castanhal, PA. FCAP 
Informe Técnico 25: 5-26.

Uhl, C.; Buschbacher, R.; Serrão, E.A.S. 1988. Abandoned pastures 
in eastern Amazonia. I. Patterns of plant succession. J. Ecol., 
76(3): 663-681.

Recebido em 03/08/2008
Aceito em 03/03/2009



 359 vol. 39(2) 2009: 349 - 360    Ducey et al.

Biomass equations for forest regrowth in the eastern Amazon 
using randomized branch sampling

It is often useful to estimate not only the total aboveground 
biomass of a tree, but also the biomass of major components.  
Here, we present equations for estimating the biomass of 
stemwood, twigs, and foliage based on the data for this 
study.  All components are as defined in the Methods section.  
Equations were fit using the same procedure as was used for 
total biomass.  For simplicity, we provide here the species-
specific equations that use a power function of DBH (i.e. 
following Model 4), because DBH is commonly measured 
and may be the only variable (other than species) available in 
some investigations.  We also present the best-fitting equation 
(as judged using AIC

c
) or set of equations that uses median 

specific gravity or height, as these may be available in some 
situations and can often improve model performance.

Results for stemwood are shown in Table A.1.  In addition, 
it is notable that the best fitting equation for predicting 
stemwood biomass, out of all the sets evaluated, is that based 
on Model 1:

Y=679.1(SG×BA×H)0.9767

Almost as good (∆AIC
c
=0.36) is that based on Model 6:

Y=757.1(SG×BA×H)

Both models had an r2 of 0.97, and the fit (as judged 
using AIC

c
) was dramatically better than the next best model 

(∆AIC
c
>35).  However, both require density from a wood 

sample taken from the first stem segment.  This is wildly 
impractical in most investigations, but it might be possible 
to use these equations advantageously in a subsampling 
approach.

Results for twigs and foliage are shown in Table A.2 
and Table A.3, respectively.  The best fitting model in both 
cases follows the same form, Model 2, which uses median 
specific gravity of the stemwood but otherwise is not species-
specific.  We note that particular caution should be taken 
with the foliar biomass equations, as foliar biomass may be 
influenced by seasonal phenology.  Also, we caution that 
estimates calculated from the equations in Tables A1 through 
A3 may not necessarily add exactly to estimates of the total 
aboveground biomass calculated using the equations presented 
in the main paper.

table A1.  Allometric equations for predicting stemwood biomass.  y is estimated biomass (kg), BA is basal area (m2), H is tree height (m), and dBH is diameter 
at breast height (cm).  r2 and RMSE are shown for informational purposes only; neither is an apt goodness-of-fit criterion, because both assume homoscedastic 
data.  the performance of the species-specific Model 3 equations is substantially better than that of the Model 4 equations (∆Aicc=9.69).

Species
Model 3 Model 4

Model r2 RMSE Model r2 RMSE
Abarema jupunba y=3260.2(BA×H)1.5813 0.86 1.75 y=0.0238×dBH3.233 0.87 1.71
Casearia javitensis y=61.8(BA×H)0.6712 0.78 0.15 y=0.2151×dBH1.750 0.76 0.16
Lacistema pubescens y=137.1(BA×H)0.8227 0.83 0.28 y=0.1329×dBH2.027 0.80 0.30
Myrcia sylvatica y=376.6(BA×H)0.9169 0.77 0.96 y=0.1022×dBH3.341 0.38 1.58
Ocotea guianensis y=543.0(BA×H)1.1278 0.85 9.59 y=0.0549×dBH2.777 0.99 1.99
Poecilanthe effusa y=800.5(BA×H)1.0429 0.99 0.19 y=0.1557×dBH2.508 0.99 0.16
Vismia guianensis y=1543.7(BA×H)1.2222 0.99 0.12 y=0.1281×dBH2.402 0.99 0.12
Other species y=386.0(BA×H)0.9704 0.93 2.05 y=0.1073×dBH2.461 0.99 0.63

table A2.  Allometric equations for predicting twig biomass.  y is estimated 
biomass (kg), MSG is median specific gravity for the species or group, BA 
is basal area (m2), H is tree height (m), and dBH is diameter at breast height 
(cm).  r2 and RMSE are shown for informational purposes only; neither is an 
apt goodness-of-fit criterion, because both assume homoscedastic data.  the 
performance of the Model 2 equation is substantially better than that of the 
Model 4 equations (∆Aicc=29.34 ).

Species
Model 2

Model r2 RMSE
All species y=10.095(MSG×BA×H)0.579 0.73 0.06

Species

Model 4
Model r2 RMSE

Abarema jupunba y=0.000147×dBH4.485 0.98 0.08
casearia javitensis y=0.0359×dBH1.951 0.81 0.03
lacistema pubescens y=0.0665×dBH1.036 0.51 0.04
Myrcia sylvatica y=0.0591×dBH1.847 0.40 0.12
Ocotea guianensis y=0.0506×dBH1.498 0.66 0.47
Poecilanthe effusa y=0.0549×dBH1.749 0.75 0.13
Vismia guianensis y=0.0433×dBH1.514 0.76 0.07
Other species y=0.0749×dBH1.350 0.78 0.13

APPEndIX I.  EQUAtiONS FOR EStiMAtiNG BiOMASS OF StEMS, tWiGS, ANd FOliAGE.
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table A3.  Allometric equations for predicting foliar biomass.  y is estimated 
biomass (kg), MSG is median specific gravity for the species or group, BA 
is basal area (m2), H is tree height (m), and dBH is diameter at breast height 
(cm).  r2 and RMSE are shown for informational purposes only; neither is an 
apt goodness-of-fit criterion, because both assume homoscedastic data.  the 
performance of the Model 2 equation is only slightly better than that of the 
Model 4 equations (∆Aicc=1.79).  the Model 4 equation has an exponent of 
0 for Abarema jupunba (i.e., dBH was not a useful predictor of foliar biomass 
for the sample data). 

Species
Model 2

Model r2 RMSE
All species y=15.151(MSG×BA×H)0.658 0.51 0.19

Species
Model 4

Model R2 RMSE
Abarema jupunba y=0.1196 0.00 0.13
Casearia javitensis y=0.0369×dBH2.191 0.82 0.04
Lacistema pubescens y=0.0488×dBH0.877 0.21 0.04
Myrcia sylvatica y=0.0535×dBH0.947 0.18 0.05
Ocotea guianensis y=0.0060×dBH1.700 0.82 1.12
Poecilanthe effusa y=0.0844×dBH1.749 0.71 0.19
Vismia guianensis y=0.0468×dBH1.791 0.96 0.04
Other species y=0.0414×dBH1.785 0.81 0.20


