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Population Dynamics Modeling of Arapaima gigas
Eliane dos Santos de Souza COUTINHO1, Luiz BEVILACQUA2, Helder Lima de QUEIROZ3

ABSTRACT
Pirarucu (Arapaima gigas) has been of the most important natural fishing resources of the Amazon region. Due to its economic 
importance, and the necessity to preserve the species hand, field research concerning the habits and behavior of the pirarucu 
has been increasing for the last 20 years. The aim of this paper is to present a mathematical model for the pirarucu population 
dynamics considering the species peculiarities, particularly the male parental care over the offspring. The solution of the 
dynamical systems indicates three possible equilibrium points for the population. The first corresponds to extinction; the 
third corresponds to a stable population close to the environmental carrying capacity. The second corresponds to an unstable 
equilibrium located between extinction and full use of the carrying capacity. It is shown that lack of males’ parental care closes 
the gap between the point corresponding to the unstable equilibrium and the point of stable non-trivial equilibrium. If guarding 
failure reaches a critical point the two points coincide and the population tends irreversibly to extinction. If some event tends 
to destabilize the population equilibrium, as for instance inadequate parental care, the model responds in such a way as to 
restore the trajectory towards the stable equilibrium point avoiding the route to extinction. The parameters introduced to 
solve the system of equations are partially derived from limited but reliable field data collected at the Mamirauá Sustainable 
Development Reserve (MSDR) in the Brazilian Amazonian Region.  
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Modelagem da Dinâmica Populacional de Arapaima gigas
RESUMO
Pirarucu (Arapaima gigas) tem sido um dos mais importantes recursos pesqueiros naturais da Amazônia. Devido à sua importância 
econômica, por um lado, e a necessidade de preservar a espécie, por outro lado, o domínio da investigação relativa a hábitos 
e comportamento do pirarucu tem sido crescente nos últimos 20 anos. O objetivo deste trabalho é apresentar um modelo 
matemático para a dinâmica populacional do pirarucu considerando as peculiaridades da espécie, particularmente o cuidado 
parental do macho sobre seus descendentes. A solução dos sistemas dinâmicos indicaram três possíveis pontos de equilíbrio 
para a população. O primeiro corresponde à extinção; o terceiro corresponde a uma população estável próxima da capacidade 
suporte do ambiente. O segundo corresponde a um equilíbrio instável localizado entre a extinção e a capacidade suporte do 
ambiente. Foi mostrado que a falta do cuidado parental de machos aproxima o ponto que corresponde ao equilíbrio instável e 
o ponto de equilíbrio estável não trivial.  Se a falta de cuidado dos machos alcança um ponto crítico, os dois pontos coincidem 
e a população tende irreversivelmente à extinção. Os parâmetros introduzidos para resolver o sistema de equações foram 
derivados parcialmente de limitados, mas confiáveis dados de campo coletados na Reserva de Desenvolvimento Sustentável 
Mamirauá (RDSM) na Amazônia brasileira.
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INTRODUCTION
Living mainly in white water lakes in the Amazonian 

floodplains, the várzea  (Queiroz, 2000), Pirarucu (Arapaima 
gigas) is today one of the most important fishing resources 
in the Amazon region. Arapaima economic importance and 
preservation of the Amazonian ecosystem in equilibrium as 
well, justifies the growing attention given to field research 
concerning the habits and behavior of Arapaima for the 
last 20 years (Queiroz, 1997, Queiroz & Sardinha, 1999; 
Castello, 2004; Hrbek T. et alli, 2005; Godinho et alli, 
2005; Castello, 2008). To the better of our knowledge, field 
observations, however, have not yet been used as input for 
mathematical models that could add important information 
to the population dynamics of that species.  This paper intends 
to bridge this gap with a model that could be partially tested 
in protected areas free from undesirable human intervention.  

In order to set up the model it is necessary to consider 
the fundamental aspects of the Arapaima reproductive system 
(Imbiriba, 1994; Queiroz, 2000). To take into account all the 
details involving the reproduction process and the stages of 
the fish life cycle would make the model excessive complex 
and almost impossible to test due to the lack of biological 
information. Alternatively, using classical simple models 
would miss important characteristics proper to this species 
and no valuable information would be obtained. The present 
approach can be considered as laying in-between these two 
extremes. We have selected the most important characteristics 
of the Arapaima life cycle and designed a model that could 

represent sequentially the interaction between two different 
life stages.

For the present analysis the Arapaima lifespan can be 
divided into four stages representing four different biological 
periods: fertilized eggs, larvae/post-larvae, juvenile and adult 
fish. (Figure 1) 

The main facts that have steered the definition of the 
dynamical system can be summarized as follows:

Choice of the partner is a female initiative.  Mating is 
determined by male’s color intensity which is somehow 
associated with the capacity for nest building and the ability 
to protect newborns (Queiroz & Sardinha, 1999; Queiroz, 
2000). Non-copulatory spawning is observed among this 
species. The fertilized eggs after spawning constitutes the first 
cycle. Approximately after seven to ten days fertilized eggs 
hatch into larvae. 

Larvae and post-larvae remain under males protection till 
they become young fishes strong enough to protect themselves 
from external threatens (Fontenele, 1948). Larvae/post-larvae 
population constitutes the second life cycle.  

The third cycle corresponds to the juvenile phase 
characterized by Arapaima total length less than 165 cm and 
sexual immaturity. 

The fourth cycle corresponds to maturity as soon as the 
adult fishes are able to mate and reproduce, which happens 
when the animals are around five years old (Queiroz, 2000). 

Figure 1 -  Arapaima’s life span divided into four characteristic periods
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A model devised to simulate the population dynamics of 
this species should, as much as possible, take into account 
the peculiarities characterizing each one of the four periods 
mentioned above. The offspring protection by males is a 
major characteristic of the second life cycle to be introduced 
in the model. Indeed, the lack of male protection introduces 
a new mortality coefficient to be added to that appearing in 
the classical population dynamics formulation. The larvae are 
kept under male’s protection for about 12 weeks, or maybe 
more (Queiroz, 2000). For modeling purposes this period 
will be extend up to twelve months. This adjustment will not 
introduce any significant perturbation in the system.

As will be explained in the next section the second and 
third life periods will be lumped into a single one. This will 
simplify the analysis while keeping the influence of the male 
surveillance present in the population dynamics. 

MATHEMATICAL MODEL
Five independent variables associated to the four life 

periods described in the previous section are needed to 
write the equations for the Arapaima population dynamics. 
Let us call these variables g1, g2, ĝ2, P and Q representing 
respectively fertilized eggs, larvae/post larvae, juveniles (male 
plus female), adult males and adult females belonging to the 
same generation. In other words those variables correspond 
to different stages of a same primitive cohort. 

In principle it is convenient to segregate male and female 
because adult males are genetically conditioned to protect the 
larvae/ post-larvae, which is not shared with adult females.  

The population variation within the time interval Δt 
associated with the different life cycles as illustrated in the 
Fig.2 can now be defined: 

Δg1: variation of the number of fertilized eggs 
Δg2: variation of the larvae/post-larvae population 

originated from Δg1

Δĝ2: variation of the juvenile Arapaima population 
corresponding to the contribution of the previous stage Δg2

ΔP,ΔQ: variation of the adult fish population, male and 
female respectively, corresponding to the contribution of the 
previous stage Δĝ2

It is important to remark that mortality due to the lack 
of proper parental care is isolated here from the other natural 
causes. Introducing a particular term to take into account 
the effect of an ineffective parental care on the population 
dynamics may provide important information about the 
consequences of uncontrolled fishing activity. As it will be seen 
in the sequel it was possible to devise an analytical expression 
that represents satisfactorily the impact of the parental care 
on the population fluctuations.

The variation of the quantity of fertilized eggs Δg1 is 
proportional to  that is, a function of the current 
population composed by fishes of several generations ready 
to reproduce.  

The parameter a1 is the probability of successful 
fertilization per male per year: 

a1= (probability of successful egg fertilization) ⁄ (male)
(year) 

The parameter a2 represents the spawning efficacy per 
female. This parameter takes also into account the fraction of 
females participating in the reproductive cycle. Then:

a2 = ( number of dropped eggs) ⁄ (female) 
Field observations have shown that the number of adult 

fishes and lake size are correlated (Castello, 2004). It is 
expected that the population reaches an upper limit which 
is a function of the area of a standard lake provided that the 
fundamental means of subsistence are kept equivalent for 
all lakes. Recent population density data of Arapaima gigas 
in Amazonian lakes (Arantes et alli, 2007) suggest that the 
normalized carrying capacity, that is the upper limit of the 
population, can be estimated as 10 adults/ha, which was 
similar to that capacity previously estimated by Queiroz 
(2000). 

Let us call  the total carrying capacity. Therefore the growth 
rate of fertilized eggs is limited by the factor . 
Therefore the effective increment of fertilized eggs per unit 
of time is . The variation Δg1 of the 
number of fertilized eggs can now be written:

Figure 2 - Block diagram depicting the relations among the variables in the 
system and the respective life periods.
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Recalling that the larvae/post-larvae population g2 belongs 
to the second life period and therefore are under males’ 
protection, the variation ∆g2 can be written as:

 and . The variation Δg1 as function of P 
and Q then reads:

Note that, if  is the total carrying capacity of some specific 
lake, then the share in the current stock of a single cohort that 
has reached maturity is . Therefore the growth rate 
of fertilized eggs corresponding to a single generation is limited 
by the factor .

The set of differential equations representing the 
Arapaima’s population dynamics can now be written:

The contribution to growth is clearly the migration from 
the previous period given by c1g1∆t and the three terms 
associated with the removal rate are:

 corresponding to natural mortality.
 corresponding to recruitment from the larvae/

post-larvae cycle to the juvenile phase.
 corresponding to mortality induced by lack 

of proper male parental care.  
With:

 : (fraction of larvae migrating to the juvenile stage)/
(year) 

 : (larvae/post-larvae mortality)/ (year)
The function  represents the relative fraction of 

larvae/post-larvae lost due to lack of protection per unit of 
time.

The derivation of the population variation  
corresponding to the next stage in the complete life cycle 
follows the same reasoning. It is easily obtained:

Where   is the recruitment rate from the juvenile phase 
to the adult phase and  the mortality rate of Arapaima 
juveniles. 

Finally the fourth and fifth differential equations are 
straightforward. Since there is no biological bias for larvae to 
develop into females or males we will consider the recruitment 
rate to be the same for males and females that is   for 
both sexes. Therefore:  

Where m3 and m4 are male and female mortality rates 
respectively. 

The first variation Δg1 involves the current population  
and . For our system, however, the relevant variables are P 
and Q which are fractions of the current stock, respectively 

and , derived from the primitive cohort. It is known that 
the Arapaima breeding aptitude is reached when the fish is 
about five years old. Let σ ≈ LF - 5  where LF is the average 
Arapaima’s lifespan expressed in years then we may write 

The third life period doesn’t bring any useful information 
for the purpose of the present model. In order to simplify the 
system of equations we introduce the following hypothesis:

The parameter ε is constant. That is, the number of young 
fishes is a time independent linear function of the number of 
larvae/post-larvae. Field observations indicate that ε is a very 
small parameter. This means that there is a substantial loss in 
the transition from larvae/post-larvae to juvenile fishes. With 
this assumption the equation (2-c) reads:

Adding this equation to equation (2-b) the parameter 
is eliminated and we obtain:

Now since ε is small we may write:

Where:  and 



 337 VOL. 40(2) 2010: 333 - 346    COUTINHO et al.

Population Dynamics Modeling of Arapaima gigas

The set of differential equations (2) then reduces to:

Where a = σ2a1a2

There is no evidence that under normal environmental 
conditions the mortality indices m3 and m4 should be different. 
This could happen if fishing would be allowed and capture 
preference – male or female – could be clearly detected. 
However this first approach disregards fishing activity. The 
population dynamics developed in this section is intended to 
simulate a fish population living in natural protected reserves, 
free from human intervention or other adverse physical or 
biological influences which could segregate males and females. 
Then P=Q and the equation (4-d) is superfluous.

The equilibrium solutions are obtained for dg1/ dt = dg2/ 
dt = dP/ dt = 0. Introducing these conditions in the system 
(4) the following relations are obtained:

The roots and  must be real if the model response 
is supposed to simulate real cases. Then, as can be deduced 
immediately from equation (6-b), the following condition 
must be satisfied:

given that the equilibrium points  and  must remain 
inside the interval:

This is the expected result because the total population 
(P+Q) is bounded by the environment carrying capacity k 
and the roots must be real and positive.

Still considering the case of fully successful parental care 
over the larvae by adult males, that is h(P)=0, and having 
in mind that obviously  the following 
inequalities are obtained from equations  (5-b,c):

The inequalities (7-a,b,c) are very useful for parameter 
estimation purposes as will be seen in the next section.

The sign of the real part of the Eigenvalue of the Jacobian 
matrix J, defined below, indicates if the solution in the 
neighborhood of an equilibrium point is stable or unstable. 

Here the set  represents a general equilibrium 
solution. From (5-a) it is evident that there are three possible 
equilibrium solutions. 

Clearly  is a solution. This equilibrium 
solution corresponds to extinction. The other two are given 
by the roots of the transcendent equation:

The corresponding values of  and  are obtained 
respectively from (5-b) and (5-c).

For flawless male parental care, i.e. , the non 
trivial equilibrium solutions are the roots of the second 
order equation obtained from (5) setting . For this 
particular case the other two, non vanishing, equilibrium 
solutions are:

 stay for the terms on the right hand side of 
the equations 4a,4b,4c respectively. The terms in the matrix (8) 
are the derivatives of Fi(i=1,2,3) evaluated at the equilibrium 
points . A detailed discussion of the stability of 
a dynamical system falls out of the scope of this paper and 
can be found in the specialized literature (Hirsh et alli, 2004; 
Guckenheimer et alli, 2002). A detailed analysis of the stability 
of the solutions of the differential equations system (4) can 
be found in [Cassiano et alli, 2007].     
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SIMULATION OF THE Arapaima POPULATION DYNAMICS. 

As explained above under undisturbed ideal environmental 
conditions the set of differential equations (4) can be rewritten 
under the reduced form:

, where β is the fraction of successful mating 
among all the possible mating pairs. Comparing this relation 
with (10-c) we find β ≈ 0,46, meaning that from the total 
number of possible breeding opportunities only 46% actually 
happens. This estimation is confirmed by field observations. 

Now from (5-a) and (5-b) with h(P*) = 0 it is easy to 
derive:

With P=Q and a = σ2a1a2. The term  was dropped 
from (9-b) because in this section the male’s parental care over 
the larvae will be considered ideal. 

The determination of the parameters introduced in 
the derivation of the system above can not be ignored if 
a numerical solution is to be achieved. This is maybe the 
critical point of the formulation since the available data and 
field observations are yet insufficient to provide a complete 
set which would allow the determination of all parameters 
in (9). On the other hand, even with a crude estimation 
of certain parameters, the analytical results may provide 
useful information to guide future field experiments and 
data collection, particularly if the output is consistent with 
the overall behavior observed in some of the lakes of the 
Amazonian region.

Even though the results presented here have to be 
considered as a first approximation of the population 
dynamics, the simulations lead to plausible solutions as it 
will be seen later. 

Field observations carried out at the Mamirauá Sustainable 
Development Reserve (Queiroz, 2000) allows the evaluation 
of the ratios (number of larvae)/(fertilized eggs) and (number 
of fertilized eggs)/(number of adults) provided that the stable 
equilibrium is reached, namely:

Recall that the number of males and females is supposed 
to be the same.  Combining (10-a) and (10-b) we get:

According to data collected at the MSDR (Queiroz, 
2000) the average number of fertilized eggs in the population 
of reproductive animals annually can be estimated as 

With (10-a) the equation (11-a) can be rewritten as  
1,35c1 = m2 + c2. The recruiting rate from fertilized eggs to 
larvae can be estimated to be 0,1 from field observations. Now 
it is expected that c2<<m2 and we may write within the range 
of approximation considered here m2 ≈ 0,135 Introducing 
this value of m2 in (11-b) and taking into account that 

 as given by (10-c) we obtain:  

Finally since  200 σ c1 >> 2m3 the following relation holds:

In Table 1 below are shown the values of c2 corresponding 
to m3 varying in the range [0,1-0,3] for an expected lifespan 
equal 15 years and, consequently, σ = 10.

Table 1 - Variation of c2 with m3 for σ = 10. 

m3 0,10 0,15 0,20 0,25 0,30
c2 0,00014 0,00020 0,00027 0,00034 0,00041

There is not enough information about m1 from field 
observations. It is possible however to estimate the values 
of this parameter from the equilibrium condition given by 
equation (6-b). It is expected that close to the equilibrium 
point under ideal environmental conditions the fish 
population fall close to the carrying capacity k, that is:

 where δ<<1

With this expression together with m2/c2 ≈ 103 and 
m3 ≈ 0,1 obtained from the previous calculations and recalling 
that δ is a small parameter, the equation (6-b) gives:

m1 ≈ 0,0002kaδ    (13)
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From the definitions of a and k it is easily obtained 
ak = 2σ2 Pa1a2. Now  is the probability of egg’s 
fertilization by all mature males and a2 is the number of 
eggs spawned by females in one breeding season. Research 
carry out at the Mamirauá Sustainable Development 
Reserve reports that a2 ≈ 40000. The probability  can be 
estimated as 5%. With σ = 10 we finally obtain ak ≈ 40000 
and therefore: m1 ≈ 8δ

A stationary fish population falling within the range 85% 
to 95% of the carrying capacity keeps the variation of δ in the 
interval 0,05 ≤ δ ≤ 0,15 leading to the correlated mortality 
rate 0,4 ≤ m1 ≤ 1,2.

The estimated value for m1 introduced in the following 
simulations is 0,8 consistent with these bounds. 

It is important to remark that the values estimated for the 
parameters may vary within a relatively large interval. The 
range of variation for some parameters may be narrowed as 
field observations progress. However there is strong evidence 
that depending on physical and biological factors some of the 
parameters may indeed present a relatively large fluctuation 
interval. The model as presented here is robust, meaning that 
it is not extremely sensitive to parameters variations within 
acceptable intervals. One of the reasons for this lies on the fact 
that a = σ2a1a2 works as a control parameter and may adjust 
the model output to the observable population dynamics 
providing an indirect measure for a1a2. 

Several simulations were performed using the MAPLE 
computer code. The solution of the system of differential 
equations was obtained with the fourth order Runge Kutta 
numerical scheme. 

We have selected three representative simulations 
considering that there is no expressive mortality due to 
lack of parental care as explained above. The parameters 
corresponding to the three cases A, B and C are displayed 
in the Table 2. 

The carrying capacity of the lake for the case C is twice 
as much as that for the case A otherwise the two simulations 
are equal.  

The points of equilibrium obtained by setting the left and 
side of the system (9) equal zero are displayed in the Table 3. 

Table 2 - Parameters to the cases A, B and C.

Case c1 m1 c2 m3 m2 k a
A 0.10 0.80 0.00014 0.10 0.135 40 965
B 0.10 0.80 0.00027 0.20 0.135 40 1002
C 0.10 0.80 0.00014 0.10 0.135 100 386

For the case A the carrying capacity was taken equal to 40. 
Since the σ=10 the lake is supposed to support around 400 
adult fishes belonging to 10 successive cohorts. 

For the case B, the carrying capacity is the same as for case 
A. The coefficients c2 and m3 are higher than those adopted 
for the case A. This means that the transfer rate from larvae to 
adult fishes is higher for this case and the adult fish mortality 
as well. The value of a was adjusted to set the number of adult 
fishes at the stable equilibrium point  equal for both systems.

Table 3 - Fertilized eggs , larvae  and adult fishes P*=Q* populations at 
the equilibrium points for the three typical cases A, B and C. 

Case
Points of 

equilibrium
P*=Q* Type of 

equilibrium

A
P1 0 0 0 Stable: node
P2 3680 2857 2 Unstable: saddle
P3 34740 25710 18 Stable: focus

B
P1 0 0 0 Stable: node

P2 4010 2964 2 Unstable: saddle
P3 36080 26670 18 Stable: focus

C

P1 0 0 0 Stable: node

P2 9650 7143 5 Unstable: saddle

P3 86850 64290 45 Stable: focus

The solutions for the three cases show consistently that 
the first and third equilibrium points are stable. The second 
equilibrium point is unstable. Populations close to this point 
may deviate towards paths leading to extinction. 

Let us consider the case A more closely.  The distance 
between the stable equilibrium P3 close to the saturation 
point with approximately 36 adult Arapaima – males plus 
females – belonging to the same generation and the unstable 
equilibrium, 4 adult Arapaima, is large enough to represent a 
serious threatening to the population. So in principle adequate 
management of fishing activity could be implemented securely.

The picture of some trajectories for particular initial 
conditions helps to understand the population dynamics. As 
shown in the figure 3, for a sufficient large initial number of 
larvae or eggs the trajectories pack into a thin bundle that 
winds up toward the stable equilibrium P3. 

For an insufficient number of eggs or larvae the trajectories 
converge to the origin, that is, to the extinction point P1. The 
basins generated by the attractors P1 and P3 are difficult to 
visualize since the solution belongs to a three dimensional 
space. The projections of the trajectories on the Pxg2 plane 
are easier to follow and clarify the main qualitative aspects 
of the solution.

The projections of the phase space trajectories on the Pxg2 
plane and the time variation of the Arapaima adult population 
are shown in the figures 4-a and 4-b respectively. The bulky 
lines in the figure 4 represent the separatrices dividing the 
plane Pxg2 into four regions. 

Under undisturbed natural conditions the population 
approaches the carrying capacity of the lake provided that 
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the initial condition is at the right side of the separatrix A-B. 
Initial conditions CI2, CI3, CI4 located on the horizontal axis 
represent test conditions where initially the lake population 
consists only of adult fishes. For the other test conditions 
CI6, CI7, CI8 located on the vertical axis, adults Arapaima 
are excluded, the population at t=0 consists of larvae/post-
larvae only. The trajectories corresponding to both cases are 
consistent with the expected behavior. After an initial decrease 
in the population of adult fishes or larvae/post-larvae, the 
system recovers the positive feedback cycle (eggs)-(larvae/

post-larvae)-(adult fishes)-(eggs) and the population converges 
towards the stable equilibrium point P3.

It is also worth pointing out that the equilibrium point 
P1 corresponding to extinction is a stable node. This means 
that the trajectories leading to extinction, CI1 or CI5 for 
instance, do not orbit around the origin which would be a 
serious drawback since in that case the trajectories would go 
through a region with negative populations. 

The trajectories on the phase plane are similar for the 
cases B and C and the same conclusions are also applicable 
to these two cases. 

Figure 3 - Trajectories in the phase space for initial conditions: (a) g1=P=0 and g2≠0 and (b) g2=P=0 and g1≠0

Figure 4 - Case A. Projection of the phase space on the plane P x g2 (a) and time variation of the mature fish populations (b) 



 341 VOL. 40(2) 2010: 333 - 346    COUTINHO et al.

Population Dynamics Modeling of Arapaima gigas

Several others tests were tried allowing the parameters 
to vary in a range bounded by values consistent with field 
observations and biological plausibility. The system has proved 
to be robust presenting no remarkable singular behavior. The 
responses vary within expected limits in the right direction 
according to field reports. 

The model defined by (9) with the parameters belonging 
to the neighborhood of the values determined above is valid 
for lakes where nearly ideal environmental conditions prevails. 
It can now be extended to examine the effects of perturbations 
coming from several origins. We will examine in the following 
section the perturbation effect caused by a peculiar behavior 
of this species. 

THE EFFECT OF INEFFECTIVE MALE’S GUARDING. 

Peculiar to this species is the male concern about the safe 
growth of the offspring. Just after the eggs are fertilized, males 
start to guard the nests. But it is only after eggs hatch into 
larvae that males perform the careful surveillance typical of the 
species, to avoid the action of predators that could endanger 
the survival and growth of the larvae/post-larvae into juveniles 
Arapaima. Failure to care properly for the offspring originated 
by disturbance from fishing activities, for instance, will have 
a direct effect on the population dynamics. The system (4) 
considers the effect of the male’s parental care through the 
term  in (4-b).

Clearly

Figure 5 - Roots of equation (6a) corresponding to the points of equilibrium 
P2,i* = Q2,i* and P3,i* = Q3,i* including males’ surveillance failure measure by αi

The two non-trivial equilibrium points are obtained by 
solving equation (6-a). Figure 5 illustrates the geometric 
determination of the solution. Clearly the roots correspond 
to the intersection of the curves f(P) and Dαh(P). The parable 
f(P) and the curve Dαh(P) are given by the expressions on 
the right- and left-hand sides of equation (6-a) respectively:

and

The parameter α indicates the degree of the surveillance 
failure. The higher the value of α, the worst is the male 
protection of the larvae. The function h(P) has to fulfill three 
important conditions:
1. Dαh(P) must intercept the parable f(P) at two and only 

two points comprised within the interval . 
Note that  are the equilibrium points for α=0,

2. Dαh(P)>0 for all P, otherwise inability in the surveillance 
task would contribute to larvae growth which is a 
contradiction,

3.  because it is reasonable to expect that if 
all males are unable to care for the offspring the collapse 
is catastrophic.  

A satisfactory expression for h(P) is:

The system (4) can be now rewritten as:
We have assumed again equal number of females and 

males in the Arapaima population for sake of simplicity. 
This hypothesis requires the quantities of males and females 
captured by fishing to be the same.

The non-trivial equilibrium points P2 and P3 are the roots 
of the transcendental equation (6-a).

Meaningful simulation now involves the variation of α 
to analyze how this parameter interferes in the population 
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profile. Let us take as reference the case C introduced in the 
previous section. Using the same set of parameters and solving 
the system (14) for α=30 and α=100 we obtain the solutions 

 and the only stable point in the system is the trivial 
solution  corresponding to extinction.

Another very interesting outcome of the model concerns 
the fertilized eggs variation with the parameter α. The variable  

 related to the stable equilibrium point at P3 has a 
maximum for α ≈ 60. From the mathematical point of view 
this is not surprising; it is a well known behavior which comes 
frequently associated to a turning point.

The biological significance is however surprisingly. As α 
increases it is expected that the quantity of larvae/post-larvae 
and consequently the quantity of adult fishes decrease. This 
expected result is confirmed by the model output as indicated 

Table 4 - Variation of the population segments for three values of α reflecting 
the male surveillance effectiveness.

P* = Q* Type of equlibrium

α=0
P1 0 0 0 Stable: node
P2 9650 7143 5 Unstable: saddle
P3 86850 64290 45 Stable: focus

α=30
P1 0 0 0 Stable: node
P2 12130 8065 6 Unstable: saddle
P3 154600 52000 36 Stable: focus

α=100
P1 0 0 0 Stable: node
P2 20260 10640 7 Unstable: saddle
P3 151900 41630 29 Stable: focus

shown in Table 4. The respective projections of the trajectories 
on the Pxg2 plane are depicted on the Figure 6.

The types of stability for the three equilibrium points for α 
≤ 100 are unchanged. As α increases, the number of Arapaima 
reaching maturity decreases as a consequence of lack of proper 
care in the earlier stages. The number of fishes at the saddle 
point P2 on the contrary increases. Far from being a favorable 
scenario a large number of fishes at the neighborhood of 
an unstable point of equilibrium may disguise an unaware 
observer who could think that a relatively high number of 
individuals would avoid a quick collapse towards extinction. 
In other words the attraction basin induced by P3 shrinks. 
The size of this attraction basin is determinant for the global 
stability of the system rather then the number of fishes. 

Therefore the measure of the risk is not the distance to 

extinction ( ) but the distance 
between the non trivial stable equilibrium population P3 
and the unstable equilibrium population P2 which can be 
considered as a measure of the diameter of the attraction 
basin. For the present case the population at the unstable 
equilibrium point P2 increases from 5, when the male care 
is most effective, to 15 when P3 and P2 practically coincide 
which corresponds to the annihilation of the attraction basin 
forecasting a catastrophic collapse. This scenario comes up 
when α ≈ 220 corresponding to the critical surveillance level 
αcrit. Therefore the population does not decrease steadily from 
45 to zero going to extinction. It decreases from 45 to 15 
when the system collapses and tends inevitably to extinction. 

The reduction of the attraction basin diameter given by the 
approximation between the points P2 and P3 with increasingly 
values of α is shown clearly in the Figure 7.  For the particular 
value of α = αcrit that brings the curve Dαh(P*)  tangent to 
the parable f(P*) – see Figure 5 – the two points coincide and 

Figure 6 - Projection of the phases space trajectories on the plane P x g2 
corresponding to increasingly failure in parental care indicated by α=30 and 
α=100
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in Table 5. The variation of the number of fertilized eggs 
would in principle follow the same tendency. However 
the scenario disclosed by the model doesn’t confirm this 
hypothesis. The quantity of fertilized eggs  at the non trivial 
stable equilibrium point P3 initially increases with increasing 
values of α. In other words, the model suggests that the lack 

but yet to be adequately investigated in further field and 
modeling research. 

CONCLUDING REMARKS
Mathematical models hardly represent the real world 

(Epstein 2008). Indeed, the massive number of variables 
involved, as its random nature and the implicit uncertainty 
disturbing the interrelation among them are almost 
insurmountable obstacles to simulate complex biological 
phenomena (Faugeras et al., 2007; Niwa 2007; Jiao,Y et al., 
2009; Moeller 2004; Cogdell, 2004; Turchin, 2003; Thieme, 
2003; Ross 1995; Hofbauer J.,1998). 

The perspective of the mathematical model adopted in 
the present paper is to serve as an useful tool that simulates 
the most important aspects of a natural phenomenon and 
can be used:

1. To guide the elaboration of control rules and 
management policies to foster the conservation of 
biodiversity and natural resources,

2.  To indicate adequate interventions and timely actions 
in the fisheries of pirarucu currently promoted in 
the Amazon (Viana et al., 2004 and 2007) to avoid 
serious disasters, 

3. To detect possible deviations in the current 
natural environment due to unexpected or hidden 
perturbations that may affect the populations of 
this species.

The system representing the population dynamics of 
Arapaima proposed here matches the main field observations 
available and reliable (Queiroz, 1997; Queiroz & Sardinha, 
1999; Queiroz, 2000; Castello, 2004; Godinho et al.,, 2005; 
Castello, 2008a; Castello, 2008b). 

Ongoing research at the Mamirauá Sustainable 
Development Reserve will certainly add very important 
information to improve the set of dynamic equations. On 
the other hand the parameters introduced to develop the 

Figure 7 - Extinction threshold as functions of the parameter α from table 5

Table 5 - Variation of the population levels at the equilibrium points P2 and 
P3 with the parameter α.

α
Point of equilibrium P3 Point of equilibrium P2

0 45 86850 64290 5 9650 7143
10 40.13 136300 57330 5.2 10420 7441
20 38 148700 54280 5.4 11250 7748
30 36.4 154600 52000 5.64 12130 8065
50 33.89 158700 48420 6.1 14060 8731
60 32.83 158700 46890 6.35 15130 9082
80 30.90 156400 44140 6.88 17510 9828
100 29.14 151900 41630 7.45 20260 10640
150 25.01 134100 35730 9.19 29550 13130
200 20.32 105100 29030 11.98 46780 17110
220 16.89 81040 24130 14.73 65660 21050

of parental care might trigger a population response to avoid 
the decrease in the recruitment to the next period. 

This tendency persists up to a value of α ≈ 60, as depicted 
in the Figure 8, when the number of eggs reaches a maximum. 
After that, the number of fertilized eggs follows the general 
tendency and starts to decline. 

We believe that this unexpected result can translate a 
process of natural resilience frequently encountered in nature, 

Figure 8 - Variation of the number of eggs as function of α



 344 VOL. 40(2) 2010: 333 - 346    COUTINHO et al.

Population Dynamics Modeling of Arapaima gigas

model can provide clues to explore additional observations 
that otherwise would be disregarded. 

Direct observations that could help tuning the values of c1 
and c2 would be of great help. We think that the parameter a1 
related to the probability of eggs fertilization by males is very 
difficult to be determined. But a2 can be determined with a 
good approximation and if the carrying capacity is known, 
which is not impossible, the value of a1 can be estimated 
as shown before. Validation of biological models is always 
difficult because the intervention on the system is very limited. 
New probabilistic and computational techniques are being 
developed that can help improve the parameter estimation 
of the analytical models (Masterton-Gibbons, 1995; Raol et 
al., 2004). 

We believe however that the most intriguing result 
obtained above concerns the impacts of failure of male’s 
parental care over the larvae survivorship. Two remarkable 
outcomes are to be highlighted from the present analysis:

1. The route to extinction is not a continuous process 
that could be stopped at any time. After a steadily 
decrease in population a critical point is reached. If 
the population decreases a little step further there will 
be no possible recovery, and a collapse will come in 
consequence. 

2. The model exhibits moderate resilience in the 
presence of unsuccessful parental care. That is, if the 
amount of expected larvae g2 tends to decrease, the 
quantity of eggs g1 spawned increases, presumably 
to induce a higher rate of fertilization. The model 
responds according to this mode only up to a given 
pressure level. If the adult population falls down 
below this level than the path towards extinction is 
unavoidable.

Concerning the first observation, it is clear that if 
some procedure to recover the favorable conditions for the 
population to grow is to be taken, this should occur before 
the adult population reaches the critical point P2. After that, 
nothing can avoid collapse (as illustrated in Figure 7), except 
with extraordinary and probably very expensive actions. We 
believe that this behavior of the population, anticipated here 
by the model, is quite plausible. If the management authority 
in charge of the fisheries is not aware of this behavior, possibly 
unsatisfactory or misleading policies regarding fishing, for 
instance, could be enforced. 

Simulations – see Figures 4 – performed with several initial 
conditions indicate that it would take about 50 years to reach 
the steady state – maximum number of adults compatible with 
the carrying capacity – starting with an adult population circa 

25% of the total corresponding to a single generation. This is 
ten times longer than the period to recovery and stabilization 
predicted before based solely in more conventional models 
(Queiroz & Sardinha, 1999). Even considering all the 
limitations of the model this is an indication that cannot be 
ignored. Inadequate fisheries practices can lead to adverse 
conditions (to the fish population and to the surrounding 
environment) that would require a long time to be recovered.      

The second observation reflects, as a matter of fact, an 
analytical outcome. If the real world responds in the same 
way it has to be verified. Whether females try to mitigate the 
effect of external threatening increasing the number of eggs 
dropped in the reproductive season or if exists some unknown 
mechanism that prevents the population to decrease is an open 
question. Recovering of fish population however has been 
reported (Hutchings J.A. et al., 2009) which is an encouraging 
finding to pursue more detailed field observations.

According to the response of the dynamical system the 
tendency to revert the population decline persists till a given 
failure intensity defined by the value of α. Beyond this critical 
value, when the reaction reaches a maximum, there is a 
reversion in the tendency to avoid the collapse. This behavior 
raised by the model far from being discarded should be further 
examined. Anyway this hypothesis could hardly be anticipated 
without the help of the analytical result. This is another 
example that models, even incorporating some simplified 
assumptions, contribute to the advance of field research.

Finally we should point out that this paper was written 
in order to outreach a broad audience and to provide some 
practical insight into the Arapaima population dynamics. 
Mathematical details were left aside and can be found 
elsewhere (Cassiano et al., 2007). The main focus was to 
implement a dynamic system and adjust the parameters to 
fit field observations.

The improvement of this model can only be made through 
a continuous interaction between people with predominant 
biological expertise and people with predominant applied 
mathematics expertise. 
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