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ABSTRACT

Very few studies have been devoted to understanding the digital terrain model (DTM) creation for Amazon forests. DTM has 
a special and important role when airborne laser scanning is used to estimate vegetation biomass. We examined the influence 
of pulse density, spatial resolution, filter algorithms, vegetation density and slope on the DTM quality. Three Amazonian 
forested areas were surveyed with airborne laser scanning, and each original point cloud was reduced targeting to 20, 15, 10, 
8, 6, 4, 2, 1, 0.75, 0.5 and 0.25 pulses per square meter based on a random resampling process. The DTM from resampled 
clouds was compared with the reference DTM produced from the original LiDAR data by calculating the deviation pixel by 
pixel and summarizing it through the root mean square error (RMSE). The DTM from resampled clouds were also evaluated 
considering the level of agreement with the reference DTM. Our study showed a clear trade-off between the return density 
and the horizontal resolution. Higher forest canopy density demanded higher return density or lower DTM resolution.
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Escaneamento laser aerotransportado para modelagem de terreno em 
floresta amazônica
RESUMO

São poucos os estudos dedicados a entender a criação de modelo digital de terreno (MDT) para florestas amazônicas. O MDT 
tem uma importante função quando o escaneamento laser aerotransportado é usado para estimar a biomassa da vegetação. 
Examinamos a relação da densidade de pulsos, resolução espacial, algoritmos de filtragem, densidade da vegetação e inclinação 
do terreno com a qualidade do MDT. Três áreas de floresta amazônica foram sobrevoadas usando LiDAR aerotransportado. 
Cada nuvem de dados original teve sua densidade reduzida objetivando 20; 15; 10; 8; 6; 4; 2; 1; 0,75; 0,5 e 0,25 pulsos por 
metro quadrado, utilizando um processo de reamostragem aleatória. Os MDTs das nuvens reamostradas foram comparados 
com o MDT de referência, produzido a partir da nuvem original, calculando o desvio pixel a pixel e resumindo-o por meio 
do erro padrão da estimativa (RMSE). Os MDTs das nuvens reamostradas também foram avaliados quanto ao nível de 
correspondência com o MDT de referência. Houve uma clara compensação entre densidade de pontos e resolução horizontal. 
Dosséis mais densos exigem uma maior densidade de retornos, ou MDT com menor resolução.

PALAVRAS-CHAVE: filtro de terreno, LiDAR aerotransportado, modelo digital de terreno, MDT, ALS
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INTRODUCTION
Developing countries are concerned with the quantification 

of their forest carbon stocks, as part of the effort to negotiate 
carbon credits for emission reductions from deforestation 
and forest degradation (Saatchi et al. 2011). The Brazilian 
Reducing Emissions from Deforestation and Forest 
Degradation (REDD) initiative aims at defining a spatial 
carbon baseline and monitoring changes in forest stocks 
(Asner 2009). The IPCC framework imposes a regional or 
national mapping approach, which poses a huge challenge to 
the monitoring programs of developing countries (Asner et 
al. 2012a). REDD implementation is technically challenging 
in countries that have limited budgets to monitor extensive 
forests with complex and variable structure, in hardly 
accessible regions (Liu et al. 2007; Saatchi et al. 2011). 
Many studies have shown that Light Detection and Ranging 
(LiDAR) technology can contribute to tackle these challenges, 
generating spatially continuous high-resolution biomass 
information (Asner 2009; Saatchi et al. 2011; Asner et al. 
2012b; Espírito-Santo et al. 2014).

Historically, large-scale carbon mapping relied on 
multispectral images and ground-based sample inventories 
(Saatchi et al. 2011). However, the multispectral-based 
approach presents problems in dealing with the complexity 
of tropical forest structures, which vary with climate, soil, 
vegetation and anthropogenic disturbances, among other 
factors (Lu et al. 2004; Sarker and Nichol 2011; Asner et al. 
2012b). LiDAR deals well with forest structure complexity, 
due to its capacity to penetrate into the canopy (Lefsky et al. 
1999). As a result, several projects aimed to estimate carbon 
stocks at regional or country level based on LiDAR technology, 
including Brazil (FUNCATE 2017), the Democratic Republic 
of the Congo (UCLA IoES 2017), Colombia (Asner et al. 
2012a), and Malaysia (Coomes et al. 2017).

The standard approach consists in calibrating airborne 
LiDAR measurements against field-based biomass estimates. 
Many studies show that field-measured biomass estimates are 
consistently related to LIDAR measurements (Næsset 1997; 
Asner et al. 2012b). However, a reliable digital terrain model 
(DTM) is essential, since the LiDAR measurements used to 
describe the forest are based on vegetation height, which is 
obtained from the difference between the elevation of each 
laser return and the DTM (Næsset 1997; Lim and Treitz 
2004; Asner et al. 2012a).

The challenge to create a good DTM is to filter the returns 
that truly reached the terrain from the LiDAR dataset (Meng 
et al. 2010). However, finding the ground returns is not as 
simple as searching for the lowest returns in a given area. 
Distinguishing between ground and non-ground returns is 
particularly hard in regions with large relief variations, and 
in regions with dense vegetation cover (Meng et al. 2010; 
Hansen et al. 2015). To overcome these challenges, different 

algorithms have been developed based on segmentation filters 
(Filin 2002), morphological filters (Arefi and Hahn 2005), 
contour based filters (Elmqvist 2002), triangulated irregular 
network filters (Axelsson 1999) and interpolation filters 
(Kraus and Pfeifer 1998; Kraus and Pfeifer 2001; Evans and 
Hudak 2007).

Misclassification of the ground returns commonly results 
in errors in the final DTM (Stereńczak and Kozak 2011). 
Many factors affect DTM accuracy, including density 
and distribution of the elevation sample, the filtering and 
interpolation algorithms, and the DTM resolution itself. 
The return density is a prerequisite to obtain very detailed 
high resolution (Liu et al. 2007) and it can be influenced by 
flight and sensor parameters, among others. Pulse density 
can be increased by increaseing the pulse rate frequency 
(PRF), increasing the scanning rate, overlapping flight paths, 
decreasing flight altitude, or decreasing the aircraft speed 
(individually or in combination). Usually, all parameters set 
to increase the pulse density also have a direct effect on the 
increase of acquisition costs (Jakubowski et al. 2013). LiDAR 
survey costs  vary extensively. In the projects developed by 
our reasearch group, survey costs have varied from 4 R$/
ha to 250 R$/ha. Tilley et al. (2004) reported an equivalent 
variation, from US$1/ha to US$37/ha. Increasing the scale 
of area coverage and setting the flight parameters can reduce 
survey costs. In this context, very few studies have tried to 
understand the relationship between DTM accuracy, pulse 
density and filtering algorithms for tropical forests (Hansen 
et al. 2015; Leitold et al. 2015; Jakubowski et al. 2013), and 
none has been carried out in the Amazon forest. 

In this study we examined the relationship between 
pulse density, filter algorithm, and DTM accuracy in three 
areas of Amazon forest. We also investigated the influence of 
vegetation density and terrain complexity on DTM accuracy.

MATERIAL AND METHODS
Three high-density airborne laser scanning surveys were 
conducted over two forested areas located in the Brazilian 
Amazon region, characterized, respectively, by open and 
dense ombrophilous forest typologies. One flight was made 
over the Cauaxi Forest (Instituto Floresta Tropical) in the 
state of Pará (area 1, 3.76°S, 48.48°W), and two other flights 
over the Jamari National Forest, in the state of Rondônia 
(areas 2, 9.08°S, 62.80°W; and area 3, 9.14°S, 63.01°W) 
(Figure 1, Table 1). The areas have been managed under the 
reduced impact logging system. For more details about forest 
management procedures, refer to Monteiro et al. (2013) for 
Jamari Forest, and to Pinagé et al. (2015) for Cauaxi Forest.

The flights were carried out by Geoid Ltd. using an ALTM 
3100 LiDAR sensor operating at a 100 kHz pulse frequency, 
integrated to a GNSS APLANIX 09SEN243 operating at a 
5 Hz frequency, and to an inertial measurement LITTON 
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413996 operating at a 100 kHz frequency. The scanning angle 
was 11°, with 65% of overlap between strips, and the flight 
altitude was about 850 m. This parameter setting resulted 
in a pulse density of  ~ 10 pulses m-2 for a single scan and 
~ 28 pulses m-2 for overlapping scans. The LIDAR sensor 
was capable of recording up to four returns for each pulse, 
including last. The vendor processed the flight products using 
the PosPac, DashMap and TerraScan softwares. All data were 
projected using UTM SIRGAS 2000 for horizontal datum 
and Imbituba tide gauge station for vertical datum.

In the context of this study, it is important to distinguish 
between the concepts of pulse density and return density (also 
known as point density). The airborne LiDAR technology 
works by sending out short pulses of laser light downward 
from an airborne platform, which defines pulse density as the 
number of laser pulses per square meter sent out by the LiDAR 
equipment. The return density is defined as the number of 
returns registered from the backscattered energy of the emitted 
pulses (Baltsavia 1999). In practical terms, a single outgoing 
pulse may generate multiple returns, when there are partially 
transmitting strata of objects above the ground, such as the 
leaves and branches of trees.

The original LiDAR data were reduced targeting the 
following pulse densities: 20, 15, 10, 8, 6, 4, 2, 1, 0.75, 0.5 
and 0.25 pulses m-2, based on a random resampling process. 
The resampling algorithm computed the original pulse density 

Figure 1. Location of the three study areas in the Brazilian Amazon, in Cauaxi Forest (Pará state, PA, area 1) and Jamari National Forest (Rondônia state, RO, areas 2 and 
3). Maps 1, 2 and 3 show the DTM derived from the original point cloud of each study area, respectively.

Table 1. Descriptive summary of the airborne laser scanning campaigns in our 
three study areas in the Brazilian Amazon, located in Cauaxi Forest (Pará state) 
(Area 1) and Jamari National Forest (Rondônia state) (Areas 2 and 3). 

Area 1 Area 2 Area 3

Flight date 27 Jul 2012 20 Nov 2011 17 Nov 2011

UTM Zone 22S 20S 20S

Elevation (m above sea level) 84 - 148 83 - 118 86 - 108

High slope (degrees) 44 19.5 16.5

Average slope (degrees) 6.2 3.3 1.8

Total area (hectares) 1214 500 500

Average return density (returns m-²) 28.3 25.8 25.1

Average 1st returns density (returns m-²) 13.89 16.15 15.43

P50 (m) 22.7 19.5 20.8

Cover (%)1 81.3 77.1 78.5

Canopy Relief Ratio2 0.42 0.38 0.41

1 (All returns above heightbreak) / (Total first returns) * 100
2 (mean - min) / (max – min)



ANDRADE et al. Airborne laser scanning for terrain modelling

 274 VOL. 48(4) 2018: 271 - 279

ACTA
AMAZONICA

to a 25-by-25-meter window and randomly removed pulses 
to reach the target pulse density. Removing a pulse implicated  
removing all returns related to that pulse, and for that reason 
the resulting point density was not exactly the same value of 
the pulse density target. During the resampling process, a new 
pulse was identified whenever a first return was found or when 
there was an intermediate return without the previous level 
(e.g. second return without a first return). More details about 
the resampling process can be found in McGaughey (2013).

To filter the ground returns for DTM creation, three 
filtering algorithms were considered. Two were based on 
interpolation (Kraus and Pfeifer 1998, from now on referred 
to as KF; and Evans and Hudak 2007, from now on referred to 
as EH), and one was based on a triangulated irregular network 
(Axelsson 1999, from now on referred to as AX). The choice 
of the algorithms was guided by their availability in airborne 
laser scanning (ALS) processing software and their popularity 
among forest analysts. The KF algorithm was implemented 
in FUSION/LTK 3.5 and set considering an 8-meter 
window size (Silva et al. 2012) and standard filter parameters 
(McGaughey 2013). The EH algorithm was implemented in 
MCC-LiDAR 2.1 and parameterized considering the scale 
parameter of 1.5 and the curvature limit of 0.3, according to 
the software manual (Hudak 2016). The AX algorithm was 
implemented in LASTOOLS version 120628 and all the 
parameters set to standard values. We produced a series of 
DTMs in a full factorial scheme of algorithms with horizontal 
resolutions (1, 2, 5 and 10 meters) and pulse densities (20, 
15, 10, 8, 6, 4, 2, 1, 0.75, 0.5 and 0.25 pulses m-2). From 
here onward, we will refer to a DTM produced in this way 
as DTMres.

To ideally assess the DTMres accuracy, the produced surface 
should be compared with a “true” terrain surface, recorded by 
differential GPS, by a leveling station or by a total station (Liu 
et al. 2007). In differential GPS acquisition, the georeferenced 
data is corrected using a static base station and post-processing, 
applying a proper geographic transformation. In theodolite 
or total station survey, the produced planimetric map should 
be georeferenced using some ground reference coordinates. 
In the Amazon, ground truth acquisition is technically 
constrained by the demands of great field effort and high 
costs (Rempel et al. 1995; Sigrist et al. 1999, Valbuena et 
al 2010). The implementation of ground surveys based on 
topographic equipment is logistically challenging in dense 
vegetation, due to factors such as limited field of view, high 
air moisture and temperature, and frequently inaccessible 
survey areas. Dense vegetation also influences GPS data 
collection by significantly increasing signal interruption 
and interference in the reception of the continuous array 
of epochs used to fix the phase ambiguity (Valbuena et al. 
2010). The forest canopy also affects precision, mainly due 
to wave propagation interference, blocking or attenuating the 
signal and increasing the multipath effect (Monico 2007). 

Such conditions substantially increase the recording time per 
point (Valbuena et al. 2010) and positional errors can reach 
3.5 m in horizontal, and 5 m in vertical position (Yoshimura 
and Hasegawa 2003). To overcome these problems, Liu et 
al. (2007) and Jakubowski et al. (2013) proposed the use of 
a DTM created from the highest return density cloud as a 
reference (DTMref). The DTMref will be used as a reference 
for DTMres. A total of 144 DTMs were created for each area 
(four resolutions x 12 pulse densities x three filter algorithms). 
To evaluate the deviation from the reference, each DTMres 
was compared to the DTMref, calculating the deviation pixel 
by pixel and summarizing the deviations as the root mean 
square error (RMSE). The comparison between DTMres and 
DTMref was carried out keeping the resolution and the filter 
algorithm fixed, and using the effect size concept by means 
of Cohen’s d (Cohen 1988). Therefore the RMSE represented 
the accuracy loss caused by the pulse density reduction, and 
Cohen’s d measured the strength of the relationship between 
two surfaces on a numeric scale. The effect size estimates 
a population parameter and is not affected by sample size 
(Sawilowsky 2009).

For each study area, the DTMres with the highest effect 
size (i.e. with the largest difference relative to DTMref) was 
subtracted from the respective DTMref by computing the 
deviation. The influence of vegetation density and slope on the 
deviation was analyzed through a scatterplot. Forest canopy 
cover is a projection of the vertical profile of canopy foliage 
onto a horizontal plane (Smith et al. 2009). As a proxy for 
vegetation density, we used the ratio between the number of 
returns above 10 m and the total number of returns, further 
referenced as cover (in %) (Smith et al. 2009; Hopkinson 
and Chasmer 2009). The slope was defined as the angle of 
inclination to the horizontal. All the analyses was performed 
in R version 3.1.1 using the raster, rgdal, and effsize packages. 

RESULTS
Even considering the same pulse density target, the final return 
density for each cloud was not exactly the same, due to the 
resampling algorithm employed (Table 2). The RMSE was 
higher for DTMres derived from the 0.25 pls m−2 clouds and 
reduced logarithmically as the pulse density increased. AX 
and KF showed very similar performance, and EH the highest 
RMSE values (Figure 2). A high-resolution DTM required 
a higher pulse density to warrant a sub-metric RMSE. In 
area 1, AX was able to create a 1m-resolution DTMres from a 
10 pulses m−2 cloud with an RMSE of 0.17 m. Considering 
a lower-resolution, the 0.75 pulses m−2 cloud generated a 
DTMres with RMSE of 0.67 m.

All DTMres had a Cohen’s d lower than 0.01, indicating a 
negligible effect size (Sawilowsky 2009). The Cohen’s d range 
for DTMres using KF varied between 0 and 0.017396, while 
AX ranged between 0 and 0.045798 and EH ranged between 
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0 and 0.099117. A transect from area 1 exemplifies the small 
effect size, that indicates a very strong relationship between 
the two surfaces on a numeric scale (Figure 3). 

Area 1 had the most complex terrain among the study 
areas. AX and KF showed sub-metric RMSE for DTMres 
produced from 0.75 and 0.5 pulses m-2 clouds, respectively. 
The DTMres produced with EH never reached RMSE values 
below 1.5 (Figure 2). For areas 2 and 3, all three algorithms 
performance better with respect to RMSE than for area 1. 
However, AX and KF still performed better then EH.

The DTMres with the highest effect size for area 1 was 
the 5m-resolution model created with AX from the 0.25 
pulses m−2 cloud. For areas 2 and 3, the highest effect size 
was obtained for the 10 m-resolution DTMres created with 
EH from the 0.25 pulse m−2 cloud. The plot of the deviation 

between DTMres and DTMref suggested that deviations 
increased with cover percentage (Figure 4). The plots of 
deviations against slope showed a decrease of deviations when 
slope increased (Figure 5). AX and KF showed very similar 
performance for all study areas. AX returned smaller RMSE 
than KF, but KF showed a smaller effect size. 

DISCUSSION
The DTM analysis of three types of vegetation in Malaysia 
showed errors varying from 0.24 m to 3.06 m for mixed 
tropical forest areas when compared to ground returns, with 
lower errors associated with the high point-density derived 
DTMs (Rasib et al. 2013). In Brazilian Atlantic Forest, 
differences up to 3.02 m were observed between the DTM 
from the resampled LAS files (1 pulse m−2) and the control 

Figure 2. Root mean square error (RMSE) of digital terrain models (DTMs) derived from resampling of originally acquired airborne LiDAR data at different pulse 
densities (20, 15, 10, 8, 6, 4, 2, 1, 0.75, 0.5 and 0.25 pulses m−2) in three areas of Brazilian Amazon forest in Cauaxi Forest, in Pará state (Area 1) and Jamari National Forest, 
in Rondônia state (Areas 2 and 3). Lines indicate resampling using different filter algorithms: Kraus and Pfeifer (KF) = light gray; Evans and Hudak (EH) = dark gray; and 
Axelsson (AX) = black. For each area resamplings are presented at spatial resolutions of 1, 2, 5 and 10 m

Table 2. Final return density (returns m-2) after resampling to targeting pulse densities of 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 15 and 20 pulses m-2. of airborne LiDAR scanning 
data in  three study areas in the Brazilian Amazon [Cauaxi Forest (Pará state) (Area 1) and Jamari National Forest (Rondônia state) (Areas 2 and 3)]. Orig = original point cloud.

Targeting pulse density (pulses m-2)

Orig 0.25 0.5 0.75 1 2 4 6 8 10 15 20

Area 1 27.6 0.4 0.7 1.1 1.4 2.8 5.6 8.3 11 13.5 19.1 23

Area 2 25.8 0.4 0.8 1.2 1.6 3.2 6.4 9.6 12.7 15.8 21.8 24.3

Area 3 25.1 0.4 0.7 1.1 1.4 2.9 5.7 8.6 11.4 14 19.8 22.8
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Figure 3. Elevation profiles for a transect from area 1 (in Cauaxi Forest, Pará state). A - DTM derived from the 20 pulses m-2 cloud (in gray) and the reference (in black); 
B - DTM derived form the 0.25 pulses m-2 cloud (in gray) and the reference (in black).

Figure 4. Difference between the digital terrain model (DTM) derived from the original cloud (Ref ) and the resampled (Resamp) clouds as a function of metric cover 
(%) in three study areas in the Brazilian Amazon. A - area 1 (Cauaxi Forest, in Pará state); B - area 2; and C - area 3 (Jamari National Forest, in Rondônia state).

Figure 5. Difference between the digital terrain model (DTM) derived from the original cloud (Ref ) and the resampled (Resamp) clouds as a function of slope in three 
study areas in the Brazilian Amazon. A - area 1 (Cauaxi Forest, in Pará state); B - area 2; and C - area 3 (Jamari National Forest, in Rondônia state).
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points obtained in the field  (Leitold et al. 2015). When 
compared to the DTM derived from the 20 pulses m-2 cloud, 
the difference was 0.19 m. In both studies, the higher the 
return density of the cloud used to create the DTM, the 
smaller was the error compared to ground points. The RMSE 
range in our study (0.01 m to 3.67 m) was very similar to 
the observed by Rasib et al. (2013) and Leitold et al. (2015). 

Our results showed an interesting relation between spatial 
resolution, deviation from the DTMref and consistency of the 
DTMres. DTMres derived from lower pulse density clouds 
showed larger RMSE and a larger effect size. Consistency 
refers to similar surfaces comparing DTMres and the respective 
DTMref. LiDAR datasets can withstand substantial data 
reduction without reducing the DTM quality, but the level 
of data reduction is significantly influenced by the desired 
horizontal resolution (Guo et al. 2010). Density reduction 
can increase the efficiency of DTM generation due to smaller 
file size and less processing time, but it depends on the terrain 
characteristics, the interpolation method, and data resolution 
(Liu et al. 2007). For tree plantations, an increase in return 
density produced little improvement in the volume estimation 
accuracy (Tesfamichael et al. 2010).

The lower performance of EH was unexpected since this 
algorithm was developed for high-biomass and high-relief 
areas (Evans and Hudak 2007). As we kept the algorithm 
parameters as suggested by the authors, there is a chance 
that EH performance can be improved in our survey areas 
by fine-tuning the parameter settings. On the other side, no 
single algorithm can perform well in all kinds of situations 
(Maguya et al. 2014).

The influence of slope was not as strong as that of the 
forest cover on DTM extraction in our study. Contrary to 
our results, in a tropical forest in Costa Rica, a comparison 
between ground control points and a DTM derived from a 9 
pulses m−2 cloud indicated larger errors in areas with greater 
slope (Clark et al. 2004). Slope was not very accentuated in our 
study areas, so that other factors, which were not controlled 
in our study, such as season (which affects leaf density), scan 
angle, and flight altitude could have influenced response to 
slope (Maguya et al. 2014). Yet, in the Costa Rica forest, DTM 
error was also larger in areas of dense forest canopy when 
keeping the relief constant (Clark et al. 2004). Forest canopy 
density was also positively correlated with DTM error in a 
coniferous forest in western North America (Reutebuch et al. 
2003). Dense vegetation has been recognized as an important 
drawback to generate accurate DTM, as it blocks the pulse 
pathway (Hansen et al. 2015; Leitold et al. 2015). An increase 
in pulse density in areas of dense canopy may increase the 
probability of pulses reaching the ground (Meng et al. 2010). 

New algorithms are being developed for terrain extraction 
from airborne laser scanning (Cheng et al. 2017). However, 
few of them are so far available as commercial software, and 

others do not have yet an end-user interface implemented. As 
new algorithms become available, it is important to compare 
their performance with that of algorithms that have been in use 
for a longer time, in order to support users in their decision-
making process. The use of airborne scanning to monitor 
tropical forests is becoming more popular, which demands a 
better understanding of the available processing alternatives 
and the consequences for product generation.

CONCLUSIONS
Our study showed that it is possible to produce consistent 
DTMs from low-density LiDAR clouds in areas of Amazon 
forest in Rondônia and Pará (northern Brazil). Among the 
three selected filters, the Kraus and Pfeifer filter was the most 
efficient to extract the DTM in our three study areas. There 
was a trade-off between pulse density and DTM quality. 
Though the DTM was still consistent with lower point 
density, its accuracy decreased. It was possible to reduce the 
observed differences by decreasing the horizontal resolution 
of the DTM. Our work indicates that, by optimizing flight 
parameters, it is possible to increase the accuracy of DTMs in 
large-scale projects of forest monitoring in the Amazon region.
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