O grupo *testacea*, que é o assunto do presente trabalho, é composto das seguintes espécies:

- *testacea* (Klug) — complexo (syn. esp.: *rhumbleri* Friese e *sakagamii* Moure MS),
- *vicina* sp. n. — complexo,
- *peckolti* (Friese) — sp. politípica, com as subespécies *peckolti* (s. str.) e *musarum* (Cockerell) n. status,
- *pseudomusarum* sp. n.,
- *moureii* sp. n.,
- *aequatoriana* sp. n.,
- *mulata* Moure, sp. n.,
- *ailyae* sp. n.,

O status de *nigritula* (Friese) não foi resolvido (cf. descrição de *peckolti*).

Para o segundo grupo, *cupira*, temos: *cupira* (Smith, s. str.), *helleri* (Friese), *nigrior* (Cockerell), *pearsonii* (Schwarz) e *orizabaensis* (Strand). A estrutura taxonômica deste grupo, certamente, será bastante alterada após um estudo minucioso.

3. BIOMONIA

3.1. ESTRUTURA SOCIAL

A estrutura social de *Partamona* não difere, de modo superficial, da dos outros Meliponinae. A colônia é composta dos seguintes elementos: uma rainha, muitas operárias e machos. A única função da rainha é a de por ovos. As operárias, fêmeas estéreis, e que podem chegar a alguns milhares numa colônia, são encarregadas de todo o trabalho: construção do ninho, coleta, alimentação das formas jovens, defesa da colônia, etc., além de produzirem cera e geléia. Os machos, ao que se saiba, não têm outra função a não ser a de fecundar a rainha. Logo após o ato de cópula, morrem. A rainha é fecundada uma só vez por um só macho (*apud* Kerr, 1969).

Quanto à divisão de trabalho, pouco se sabe a respeito em *Partamona*. As espécies *cupira* e *testacea* (s. str.) foram estudadas com respeito ao processo de apropriação e postura das células por Sakagami & Zucchi (1966) e Sakagami, Beig & Akahira (1964) respectivamente. Kerr & Santos Neto (1956) estabeleceram que em *Melipona quadrifasciata* Lep., as diferentes funções assumidas pelas operárias estão relacionadas com diferentes faixas etárias. Isso, entretanto, nunca foi observado em *Partamona*, e parece não ser um sistema tão rígido nos demais Meliponinae estudados pelos seguidores de Kerr e pelo grupo de Sakagami e Zucchi.

3.2. COMUNICAÇÃO

O sistema de comunicação tem uma função muito importante na enxameação e, consequentemente, na dispersão da espécie, como veremos adiante.

3.3. ENXAMEAÇÃO

Os Meliponinae diferem de todos os demais insetos sociais no modo de estabelecer novos ninhos. O processo de fundação de um novo ninho, ou enxameação, foi esclarecido em 1954 por Nogueira-Neto.

De um modo sumário, o processo é o seguinte: as campeãs procuram um local para estabelecer a nova colônia; após este ter sido encontrado, um grupo de operárias passa a construir o novo ninho às expensas do ninho mãe, ou seja, levam do ninho mãe, se não todo, pelo menos, a maior parte do material necessário para as edificações e, até mesmo, o alimento. Quando este novo ninho estiver pronto, inclusive com alimento armazenado, é que se dá a enxameação propriamente dita, que pode ser uma emigração em massa ou gradaativa. Nesta fase, uma rainha virgem é conduzida para a nova habitação. Os machos, geralmente, se aglomeram de frente ao novo ninho, o que levou Nogueira-Neto a admitir que a rainha primeiro visita o novo ninho e, depois sai para o vôo nupcial. As relações de dependência com a colônia mãe podem continuar ainda por um bom tempo.

As observações de Nogueira-Neto, foram feitas em espécies dos grupos Nannotrigona, Plebeia, Tetragonisca, Trigona (s.str.) e Melipona.

Em Partamona, tal processo nunca foi observado, mas já tive oportunidade de estudar ninhos recém-estabelecidos. Um deles (cole-tado em Aragarças, GO), de uma espécie do grupo cupira, possuía todas as edificações prontas, inclusive com alimento armazenado, e apenas um pequeno favo com início de postura. Isso, certamente, não permite fazer inferências sobre o modo de enxamear, mas pelo menos mostra que o ninho já estava pronto, quando a rainha iniciou suas atividades.

Esse mecanismo de enxameação que, por um lado, pode ser uma garantia de sobrevivência do novo ninho pode, de outro lado, ser um fator limitante na expansão de uma espécie.

Uma barreira geográfica, como um rio, p. ex., pode impedir uma espécie, principalmente se for do grupo que marca trilha de cheiro, de ampliar sua área. Mesmo para aquelas que não marcam trilha, como supostamente é o caso de Partamona (cf. comunicação), um rio relativamente largo pode ser um sério empecilho para a fundação de novas colônias.

Os machos são os principais responsáveis pela dispersão do patrimônio genético. De acordo com Zucchini (inf. pessoal), os machos abandonam as colônias e formam agregados de vida independente, provavelmente se alimentando diretamente nas flores. Essa dependência das colônias e a alimentação direta nas flores, dão-lhes a possibilidade de cobrir, gradativamente, grandes distâncias e, ainda que acidentalmente, podem transportar rios largos ou outra barreiras qualquer.

Aqui, também, existe um aspecto interessante para quem estudar diferenciação geográfica: uma vez que a rainha copula com um só macho, a prole tende a ser homogênea, desta forma ocorrendo, às vezes, diferenças consideráveis entre populações de ninhos de uma mesma área (veja, p.ex., as amostas de Porto Velho de testacea, s.str.). Isto pode levar o pesquisador desse campo a interpretações errôneas.

3.4 NIDIFICAÇÃO

Este subgênero está estreitamente ligado, em seus hábitos de nidificação, aos térmitas. A maior parte das espécies que nidifica acima do solo, o faz dentro de termiteiros vivos ou abandonados. Talvez, apenas duas ou três espécies desse grupo, não dependam de tal hospedeiro, entretanto, seus ninhos são construídos basicamente de terra (em ninhos abandonados de aves, em árvores, barrancos, etc.) e têm, externamente, a aparência de um termiteiro, e todos os componentes do ninho são homólogos ao das espécies termítófilas. Nas espécies de hábitos subterrâneos, a utilização de termiteiros, pelo menos em uma espécie, parece ser facultativo (Camargo, n.p.).

O lugar de nidificação e o tipo de hospedeiro, aparentemente, têm valor específico. Assim, temos espécies que só constroem em buracos no solo ou cavidades de termiteiros e
formigueiros subterrâneos, outras, em termi-teiros de superfície de solo, outras ainda, em termiteiros arbóreos. Em lugares onde ocorre simpatria entre várias espécies, pode observar-se certa homogeneidade quanto à preferên-cia pelas espécies de termiteiros. Estudar a preferência ou especificidade das relações entre abelhas e térmitas, não está incluído em nossos projetos, por enquanto, mas, está claro que uma abordagem deste tipo, poderá dar bom rendimento para auxiliar na elucidação dos pa-drões de evolução e especiação.

Descrições ou notas sobre ninhos de Partamona (s.str.), se encontram em Silvestri (1902), Mariano (1911), Ilheing (1903-1930), Ducke (1916), Kerr et al. (1967), Camargo (1970) e Wille & Michener (1973). Já fiz, tam-bém, observações de um bom número de ni-nhos, que mencionarei, apenas, como informa-cão geral, uma vez que isto é assunto de um futuro trabalho.

Os componentes do ninho, os materiais utilizados e a forma das edificações são bai-camente os mesmos para todas as espécies conhecidas. Ora as edificações são bastante simples, ora bastante complexas, porém sem-pre homólogas. Na figura 1, vê-se um ninho de vicina sp.n., um dos mais complexos que tive oportunidade de estudar.

De um modo geral, os componentes do ninho são: estrutura de entrada, vestíbulos, câmara de crias e armazenagem de alimento e galeria de drenagem nos ninhos subterrâ-neos.

Estrutura de entrada: construída, basicamente, de terra compactada com resinas e, possivelmente, cera; tem, quase sempre, a for-ma de uma concha acústica, com o orifício de entrada na parte inferior, o que permite o pou-so muito rápido das campeiras (veja fig. 2).

Vestíbulo: denomo como vestíbulo, a câ-mara, ou câmaras (veja fig. 1), que antecedeem a câmara principal do ninho (local das crias). Estes vestíbulos aparecem em todas as espé-cies que conheço e naquelas mencionadas na literatura; ora são ligadas a câmara principal por meio de uma estreita galeria como na fig. 1), ora amplamente ligadas a esta. O que carac-teriza o vestíbulo é a presença de uma es-trutura radicular construída de terra e cerúmen e, usualmente, um ou mais potes, semelhantes aos potes de alimento, porém, vazios. Em muitos casos, aparece também anexo a essas es-truturas, algumas lamelas cerosas, semelan-tes às do invólucro de crias (veja figs. 1 e 2). Em uma das espécies que estudei (vicina), ocorriam dois vestíbulos; no primeiro, apare-ciam todas essas estruturas acima descritas; o segundo era preenchido por lamelas cerosas e alvéolos de cria e potes, ambos vazios (fig. 1). Quando descrevi um ninho de testacea (s.str.) de Porto Velho (Camargo, 1970), ad-miti que essas estruturas (vestíbulos) serve-sem para abrigar a força de defesa da colônia (hipótese aceita por Michener, 1974). Tam-bém, pensei na possibilidade de tratar-se de um ninho falso (hipótese aceita por Kerr,
(1969), uma vez que inclui alguns ou todos os componentes de um ninho funcional, porém, sem provisões e sem crias. O ninho que apresento, na figura 1, favorece mais esta segunda hipótese. Pensar que estas câmaras tenham, antigamente, servido como verdadeiras câmaras de cria, não é aceitável, porque os Meliponinae têm o hábito de destruir e reutilizar o material das partes velhas do ninho. Também, já examinei ninhos recém-construídos (Camargo, n.p.), onde o vestíbulo aparecia pronto e com todos os seus componentes usuais. Se estes fato e argumentos não forem suficientes para mostrar, que estes vestíbulos são estruturas funcionais e, certamente, de valor adaptativo para o grupo, resta lembrar, que são constantes em todas as espécies conhecidas. Nos ninhos estudados por Kerr et al. (1967) e por Wille & Michener (1973), essas estruturas também, foram notadas.

Câmara de crias e de armazenagem: compõe-se dos favos de cria, que são dispostos em camadas horizontais superpostas ou em espiral, invólucro e potes de mel e pólen. O invólucro é constituído de finas camadas cerossas envolvendo os favos de cria; às vezes, também os potes. Em algumas espécies subterrâneas distinguem-se dois tipos de invólucro: um interno ceroso, ao redor dos favos, e um externo (geralmente com algumas camadas), onde a terra é o principal componente. Nos ninhos arbóreos independentes, o invólucro externo é denominado escutelo ou batume. Os potes de mel e pólen são iguais e não têm uma posição determinada em relação às demais estruturas desta câmara, mas, geralmente, formam massas compactas, localizadas nas partes laterais e inferiores aos favos de cria. Em vicina, duas câmaras suplementares foram construídas para alojar os potes de alimento (fig. 1).

Um aspecto interessante e, talvez, peculiar ao subgênero Paratanona, é o modo de sustentação dos favos, invólucro e potes de alimento. A câmara é transpassada por um grande número de pilares e conexões permanentes, construídos de terra e cerúmen. Todas as edificações da câmara se apoiam nestes pilares. Em um ninho recém-estabelecido, que observei (Camargo, n.p.), tive a impressão de que os pilares são os primeiros elementos a serem construídos, dentro da câmara. Nos outros Meliponinae, os favos e demais componentes do ninho são sustentados por meio de conectivos e pilares de cerúmen que não são permanentes.

No caso das espécies termitófilas, o espaço das câmaras e galerias é ampliado ou modificado, mediante a raspagem das lamelas do termiteteiro, e a construção das paredes ou batume é feita com o próprio produto da raspagem, compactado com cerúmen (cera e resinas). As evidências, que temos desse comportamento, são indiretas.

As relações entre abelhas e térmitas não são conhecidas. Observei que, quando uma barreira entre o termiteteiro e o ninho das abelhas é rompida (artificialmente), ambos defendem seus territórios. As vantagens dessa
associação não são conhecidas, mas, parece-
me que as abelhas (hóspedes) são as únicas
beneficiadas.

Galeria de drenagem: é um canal, ou ca-
naís, localizado na parte inferior do ninho e
que, supostamente, serve para drenar os ex-
cessos líquidos. Foi descrito, primeiramente,
por Smith (1954) e Portugal-Araújo (1963),
para algumas espécies da África. Kerr et al.
(1967), Camargo (1970) e Wille & Michener
(1973), descreveram-no para diversas espécies
Neotropicais, inclusive para testacea (s.str.)
da região de Manaus e Porto Velho. Usualmen-
te, ocorre nas espécies de hábitos subterrá-
neos, mas tive oportunidade (Camargo, n.p.)
de observar estruturas homólogas ou análogas
mesmo em espécies de Meliponinae que nidifi-
cam em árvores.

3.5. MISCELÂNEA DE NOTAS BIONÔMICAS

A determinação de castas em Partamona
(s.str.), como em muitos Trigonini, é feita,
aparentemente, em base trófica (veja Darchen,
1973 e Camargo, 1972). As células reais são
bem maiores que as das operárias e machos
e construídas, quase sempre, na periferia dos
favos. Tenho notado, também, em alguns ni-
nhos que estudei, células reais no invólucro.
Isso indica, que todos os demais indivíduos do
favo emergiram, e que este foi totalmente
destruído (o que é usual em Meliponinae). res-
tendo, apenas, as células reais que, então, são
fixadas no invólucro. Esse fato mostra que a
rainha, ou tem um período de diapausa ou,
simplesmente, tem um período de desenvol-
vimento mais longo que o das operárias e
machos.

O sexo, como em muitos outros Hymenop-
tera, é determinado através do sistema haplo-
diplóide (arrenotoquia), ou seja, os machos
são haplóides (originários de ovos não fertili-
zados) e as fêmeas são diplóides (de ovos

Kerr & Silveira (1972), estudando carióti-
pos, colocam Partamona (s.str.) junto ao gru-
po Trigona, Tetragona, Nannotrigona, Geotrig-
ona e Scaptotrigona, todos com n = 17 cromos-
amos.

O sistema glandular de cupípa, de acordo
com Cruz-Landin (1967), não apresenta gran-
des especializações com relação aos demais
Trigonini. A figura 42 (mandíbula e glândula
mandibular) apresentada por essa autora, não
é de cupípa e, certamente, de nenhuma outra
Partamona, pois a mandíbula das espécies des-
te gênero apresentam somente dois dentes, e
não quatro (que é peculiar a Trigona. s.str., e
Paratrigona) como na figura citada. É possível
que tenha havido troca de figuras e não erro de
identificação da espécie.

Na localidade de Lapa -PR- em 1961, Mouré
(inf. pessoal) observou operárias de cupípa
helleri retirando terra sempre do mesmo local,
e transportando a porção retirada nas corbicu-
las, como se fossem bolas de pôlen.

4. O ESTUDO DA VARIAÇÃO
GEOGRAFICA

O estudo da variação geográfica dos orga-
nismos não é uma questão puramente prática,
para poderem empregar-se corretamente os
conceitos taxonômicos, mas, sim, a maneira
de levantar dados para o estudo dos padrões
de especiação (Mayr, 1942).

Os processos de variabilidade dos organismos
e os fatores relacionados, ou responsáveis,
estão muito bem discutidos em Mayr
(1942 e 1963), Dobzhansky (1941) e, de uma
maneira sumária, mas elegante, em Vanzol

A escolha dos caracteres, as técnicas e os
métodos, são os problemas mais sérios em um
estudo deste tipo, além da representação geó-
gráfica do material disponível. A metodologia
mais viável, e que é a utilizada neste trabalho
(vide métodos), é aquela desenvolvida por
Vanzolini (1951) e Vanzolini & Williams (1970),
denominada "método de transectos", que consis-
te em comparar caráter por caráter em gru-
pos de localidades alinhadas geograficamente.
Na integração de todos os transectos para to-
do os caracteres, se obtém o padrão de varia-
ção ou de diferenciação da espécie. Este mode-
lo de trabalho, evidentemente, pressupõe a dife-
rença geográfica e é aplicável ao nível de
espécie ou de complexos em transição. Foi ado-
tado com base em uma inspeção preliminar
em parte do material deste trabalho, no qual
notamos existir alguma variação geográfica, e
no trabalho de Mouré & Kerr (1950), que mos-