INTRODUÇÃO

No presente trabalho o autor apresenta mais resultados de testes de desempenho e de durabilidade da bomba e sugere algumas modificações na construção em função destes testes subseqüentes.

MATERIAIS E MÉTODOS

Construção da bomba

(*) Pesquisa financiada pelo Banco do Brasil S.A. através do seu Fundo de Incentivo à Pesquisa Técnica Científica (FIPIC).

(†) Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus - AM. AAMAZÔNICA, 16/17 (1º Semínio), 571-590, 1986/87.
Medição da vazão diária em função da velocidade da correnteza

Esta medição foi feita por simulação, isto é, rebocando a bomba a uma velocidade determinada, na água parada de uma lagoa. A bomba foi rebocada ao longo de uma embarcação de 18 m de comprimento, guardando 2 metros de distância entre o casco do barco e a bomba. Um medidor de correnteza (Current Meter AA, Scientific Instruments Inc., Milwaukee, USA) posicionado dois metros em frente da bomba mediu a velocidade do fluxo d'água. A mangueira que conduzia a água banheada foi ligada até uma altura determinada do nível do barco e a vazão da bomba medida cronometrando-se o tempo para encher uma proveta de 1000 ml mantida a esta altura. A experiência foi repetida com várias velocidades de reboque e várias alturas de bombeamento.

Testes de durabilidade

A bomba foi instalada no rio Taranã Grande perto de Manaus em março de 1982 e retirada em março de 1983 depois de um ano de uso contínuo. A altura do bombeamento foi de aproximadamente 8 m e a correnteza (que neste rio varia rapidamente em função da chuva) foi em torno de 0,7 m/s. Ao fim da experiência a bomba foi desmontada e foi verificada a integridade das peças observadas. Modificações do desenho das peças foram feitas em consequência das observações.

RESULTADOS

Vazão diária da bomba

A vazão diária da bomba em função da correnteza em diferentes alturas de bomba-mento está mostrada na Fig. 1).

Durabilidade

Depois de um ano de uso a bomba ainda estava em funcionamento. Porém várias peças sofreram desgastes, principalmente o couro de um dos pistões e as buchas do eixo. Desse modo, a maioria das articulações superiores e inferiores das baias. Toda a estrutura precisou ser limpa e pintada novamente. Em um outro teste foi observada a corrosão galvânica das extremidades de eixo, provocando a queda dos flanges que servem como virabrequins. Um outro problema que surgiu foi que as peças de partida só lu- sas em suspensão na água se perderam nas válvulas dos pistões, mantendo-as abertas = impedindo assim a pressurização da bomba.

Em consequência dos problemas observados durante um ano de testes, foram feitas as seguintes modificações:

- Aumento do diâmetro do eixo: O eixo do rotor, feito de aço galvanizado de 3/4" foi substituído por um de 1". O aumento do diâmetro tem por consequência o aumento da área de contato dentro das buchas e assim a diminuição do desgaste destas. Logicamente, os virabrequins, feitos de flanges, também foram trocados, substituindo-se os 572.

John B. Harwood
velhos de 3/4" por novos de 1". Esta última substituição tem por consequência aumentar a robustez da fixação dos flanges.

b) Incorporação de um filtro na entrada d'água. Uma entrada de água separada do pistão foi construída e equipada com um filtro de tela (Fig. 2).

c) Modificação da biela. A biela inferior da biela foi modificada para facilitar a construção e troca (Fig. 3).

O sistema de furo e pino que segurava o pistão foi substituído por lâminas de borracha de prata, diminuindo assim o desgaste do metal (Fig. 4).

d) Fixação do flutuador. Originalmente o flutuador foi fixado usando-se tâbuas em ângulos entre ele e a armação. Este sistema foi substituído por um sistema de braços dobráveis que abrem facilmente, permitindo o flutuador de ser removido convenientemente do tanque transportando a bomba (Fig. 5).

DISCUSSÃO

Vazão diária da bomba

A Fig. 1, mostra a vazão diária da bomba em função da velocidade da correnteza e da altura de bombeamento. É interessante notar que a vazão (que é uma medida da potência mecânica) aumenta linearmente com a velocidade da correnteza. Essa relação linear já foi observada por Harwood (1985) reduzindo a potência com um dinamômetro e por Azão & Rego (1981) usando um rotor Savonius eólico.

O segundo aspecto interessante do gráfico da Fig. 1, é a paralelismo das retas e o fato que a distância entre elas é proporcional às diferenças de altura de bombeamento, o que permite elaborar uma equação simples para o desempenho da bomba, usando-se o raciocínio seguinte.

A equação de qualquer uma das retas da Fig. 1, é da forma:

\[y = mx + c \]

onde \(y \) é a vazão em litros/dia

\(m \) é a constante da bomba

\(x \) é a correnteza em m/s

\(c \) é uma constante que depende da altitude de bombeamento.

Ou, para a Fig. 1, o valor de \(m \) se calcula em 3692 (litros/dia) / (m/s).

Os valores de \(c \) são:

- com 1,5 m de altura, - 1500 litros/dia
- com 7,5 m de altura, - 2500 litros/dia
- com 10,5 m de altura, - 3600 litros/dia

O c que faz \(c = \frac{1500}{9} \) ou \(c = \frac{2500}{9} \) ou \(c = \frac{3600}{9} \).

Assim, substituindo os valores de \(m \) e \(c \) na equação (i) se obtém:

\[y = 3692 x - 1250 \]

Desempenho de uma bomba d'água ...
Esta equação (iii) permite se calcular a vazão da bomba (y litros/dia) sabendo-se a velocidade da correnteza (v m/seg) e a altura do bombeamento (a metros).

A Fig. b, mostra em forma gráfica a vazão da bomba, calculada usando-se a equação (iii). Porém, a extrapolação deve se limitar a velocidade entre 0,5 e 1,1 m/seg. Com velocidades mais altas, os dados experimentais já não mostram linearidade e com velocidades inferiores a rotação do rotor se torna irregular.

A potência mecânica desenvolvida pelo rotor depende da vazão multiplicada pela altura (y * a). Substituindo na equação (iii) e diferenciando, se conclui que a potência máxima do rotor (em determinada correnteza) é desenvolvida quando o bombeamento faz a uma altura equivalente à metade da altura máxima atingível com esta correnteza (a = \frac{1}{2} hₕ) e é proporcional à velocidade de rotação.

Uma outra conclusão concernente a eficiência ou rendimento do rotor. A equação (iii) mostra que a potência desenvolvida pelo rotor é linear com respeito à velocidade de correnteza, enquanto que a potência disponível na correnteza é proporcional ao cubo da velocidade. Como a eficiência do rotor é a primeira dividida pela segunda, pode-se concluir que a eficiência do rotor cai quando a velocidade da correnteza aumenta. Esta conclusão coincide com a observação de Harwood (1984), que usou um dinamômetro para medir a potência do rotor Saviour nos diversos testes.

Durabilidade

A bomba tem uma boa durabilidade. As experiências descritas aqui mostram que a manutenção necessária é mínima. Se aconselha retirar a bomba da água a cada seis meses e examiná-la, trocando as buchas principais e os courcos dos pistões e pintando a estrutura inteira pelo menos uma vez por ano.

Descrição final

Novos desenhos incorporando as modificações feitas durante este trabalho e mostrando outros detalhes para facilitar a construção e a instalação, são apresentados nas figuras 7, 8, 9, 10 e 11. A lista de materiais necessários para construir a bomba é apresentada na Tabela 1.

Perspectivas para um aumento da potência

A bomba mostra-se ser um aparelho simples, econômico e prático. Muitas uma grande parte de sua simplicidade e economia é devida ao uso do camburão de óleo para fabricar o rotor. Quando se constrói um rotor maior numa tentativa de aumentar a potência, o custo e complexidade da construção aumentam consideravelmente. Quando se colocar mais camburões num só eixo, a construção torna-se mais problemática, porque o eixo tende a longo, sofre grandes forças de flexão.

Quando se precisa bombear um pouco mais de água, é preferível simplesmente instalar duas bombas do tipo descrito. Quando se precisa bombear muito mais água, é provável que um outro tipo de rotor (Hélice, Barreiros ou outro) seja mais prático do que um rotor Saviour gigante. Uma outra possibilidade é que unidas hidrelétricas (fig. 10) desenvolva uma potência elétrica instalada numa correnteza de 1,1 m/seg., que faz a bomba funcionar em momentos em que a

John H. Harwood
electricidade não seja necessária para outras finalidades, usando-se bombas elétricas com
válvulas.

Por essas razões os trabalhos futuros do autor terão como enfoque o desenvolvimento
de outros rotores, considerando-se que o rotor Savonius, muito funcional na unidade
descrita aqui, tem potencial limitado para ser aplicado em unidades maiores.

SUMMARY

A simple water-pump powered by a submerged Savonius rotor was tested. After one
year of continuous operation the pump was still functioning. However certain modifica-
tions were designed to reduce wear on the components. Now drawings and a new list of
materials are presented. A graph of pumping rate against current speed showed that for
currents of 0.5 to 1.1 m/s, the pumping rate (in liters/hr) depends linearly on the
current speed (in meters/sec) for a given pumping height (in meters) according to the
equation \(Q = 700 R - 150 \times \frac{H}{R} \). The pump is considered practical, cheap and to have
a useful lifetime. However further developments of the technology are limited by the fact
that the rotor becomes much more expensive when it is no longer made from a saw-up oil
drum.

Desempenho de uma bomba de água ...
<table>
<thead>
<tr>
<th>Material</th>
<th>Tipo</th>
<th>Quantidade Total</th>
<th>Especificação das peças feitas com esse material</th>
<th>Número das peças tendo a função da coluna 5</th>
<th>Fundição da peça descrita em %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aço</td>
<td>galvanizado 1"</td>
<td>107 cm</td>
<td>peça de 107cm rosqueada em ambas as extremidades</td>
<td>1</td>
<td>eixo do rotor</td>
</tr>
<tr>
<td></td>
<td>galvanizado 3/4"</td>
<td>518 cm</td>
<td>peça de 177cm rosqueada em uma extremidade</td>
<td>2</td>
<td>elemento vertical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peça de 45cm rosqueada em ambas as extremidades</td>
<td>2</td>
<td>componentes de travesa superior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peça de 37cm rosqueada em uma extremidade</td>
<td>2</td>
<td>entrada de água</td>
</tr>
<tr>
<td></td>
<td>galvanizado 1/2"</td>
<td>370 cm</td>
<td>peça de 95cm</td>
<td>1</td>
<td>travessa inferior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peça de 22cm</td>
<td>1</td>
<td>travessas média</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peça de 75cm</td>
<td>2</td>
<td>bielas</td>
</tr>
<tr>
<td></td>
<td>plástico</td>
<td>103 cm</td>
<td>peça de 42cm rosqueada em todos as extremidades</td>
<td>1</td>
<td>câmeras de ar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peça de 33cm rosqueada em uma extremidade</td>
<td>2</td>
<td>cilindros das bombas</td>
</tr>
<tr>
<td>Chaveiro</td>
<td>1/2" x 1/8"</td>
<td>6 m</td>
<td>peça de 150cm</td>
<td>4</td>
<td>pirâmide do ponto de amarrar o cabo</td>
</tr>
<tr>
<td>Barra</td>
<td>3/4" x 1/16"</td>
<td>436 m</td>
<td>peça de 29 cm</td>
<td>2</td>
<td>braçadeiras do flutuador</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peça de 75 cm</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>após de 110 cm</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>N.º</td>
<td>Parte da Bomba</td>
<td>Descrição</td>
<td>Material</td>
<td>Dimensões</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Tubo de Redução 2" x 1"</td>
<td>Prata de ar</td>
<td>2" x 1"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Porta de ar superior</td>
<td>Prata de ar</td>
<td>2" x 1"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tampa da Bomba 3/4"</td>
<td>Prata de ar</td>
<td>3/4"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Tampa Superior da Bomba</td>
<td>Prata de ar</td>
<td>3/4"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fecho 3/4"</td>
<td>Prata de ar</td>
<td>3/4"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tampa inferior da Bomba</td>
<td>Prata de ar</td>
<td>3/4"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Tampa inferior da Bomba</td>
<td>Prata de ar</td>
<td>3/4"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Desempenho de uma bomba de água...
<table>
<thead>
<tr>
<th>Item</th>
<th>Quantidade</th>
<th>Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parafusos</td>
<td>4</td>
<td>2 1/2" x 3/8"</td>
</tr>
<tr>
<td>Aço</td>
<td>2</td>
<td>4' x 3/16"</td>
</tr>
<tr>
<td>Com puxador</td>
<td>2</td>
<td>2 1/2" x 3/8"</td>
</tr>
<tr>
<td>Conexão</td>
<td>4</td>
<td>3/16"</td>
</tr>
<tr>
<td>Madeira</td>
<td>6</td>
<td>3/16"</td>
</tr>
<tr>
<td>Puente</td>
<td>6</td>
<td>3/16"</td>
</tr>
<tr>
<td>Decking</td>
<td>6</td>
<td>3/16"</td>
</tr>
<tr>
<td>Duro</td>
<td>6</td>
<td>3/16"</td>
</tr>
<tr>
<td>Chopped</td>
<td>6</td>
<td>3/16"</td>
</tr>
<tr>
<td>Pastilha</td>
<td>6</td>
<td>3/16"</td>
</tr>
<tr>
<td>Tela</td>
<td>6</td>
<td>3/16"</td>
</tr>
<tr>
<td>Bebida</td>
<td>6</td>
<td>3/16"</td>
</tr>
<tr>
<td>Bebida do titular</td>
<td>x</td>
<td>3/16"</td>
</tr>
</tbody>
</table>

Elenco de materiais utilizados na construção de tomb.

John H. Harwood
<table>
<thead>
<tr>
<th>Material</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>bucha de 11cm x 5cm x 3,8cm</td>
<td>2</td>
</tr>
<tr>
<td>cilindro de 18 cm de altura e de 4,8 cm de diâmetro</td>
<td>2</td>
</tr>
<tr>
<td>têxua</td>
<td></td>
</tr>
<tr>
<td>têxua</td>
<td></td>
</tr>
<tr>
<td>couro 1/8"</td>
<td></td>
</tr>
<tr>
<td>tambores 20"</td>
<td>2</td>
</tr>
<tr>
<td>penelra 2cm (aproximadamente)</td>
<td>1</td>
</tr>
<tr>
<td>mangueira 1/2"</td>
<td>2</td>
</tr>
<tr>
<td>buchas dos virabrequins</td>
<td></td>
</tr>
<tr>
<td>pistões</td>
<td></td>
</tr>
<tr>
<td>ligeiro e conchas do rotor</td>
<td></td>
</tr>
<tr>
<td>revestimento dos pistões</td>
<td></td>
</tr>
<tr>
<td>flutuador</td>
<td></td>
</tr>
<tr>
<td>filtro de entrada da água</td>
<td></td>
</tr>
<tr>
<td>conduções d'água</td>
<td></td>
</tr>
</tbody>
</table>

continuação Tabela 1. Lista dos materiais utilizados na construção de uma boia.
Refe rências bibliográficas

(Aceito para publicação em 26.05.1986)