VARIAÇÃO DIMENSIONAL DOS ELEMENTOS XILEMÁTICOS EM DUAS ESPÉCIES MADEIREIRAS
DA AMAZÔNIA. (1)

Ademir Castro e Silva (1)

RESUMO

Árvores de Saccogletia guianensis Benth e Andira parviflora Ducke com aproximadamente 26 metros de altura foram secionadas em sete partes para estudo das dimensões de fibras e dos elementos de vasos. No sentido radial ambas espécies mostraram um aumento no comprimento de fibras com algumas irregularidades da média para o câmbio bem como fibras mais curtas no topo do tronco. Neste existe um maior número de vasos por milímetro quadrado. É discutido a influência de reguladores de crescimento no número de elementos de vasos. Existe uma diminuição no comprimento das fibras e elemento de vasos em direção ao topo devido a terem alcançado valores máximos numa determinada altura, e um decréscimo irregular na largura desses elementos da base para o topo das árvores. No sentido radial ambas espécies mostraram um pequeno aumento na largura das fibras e elementos de vasos. Estes e as fibras são menores nos galhos, e o número de elementos de vasos é maior para as duas espécies. A razão WIC utilizada como uma estimativa de razão do volume da parede celular para o volume da célula diminui da média em direção ao câmbio. São apresentados 10 gráficos e uma tabela é discutido os fatores que podem influenciar na variação dos elementos ao longo da árvore.

INTRODUÇÃO

O estudo da variação dos elementos estruturais ao longo da árvore é de grande interesse para pesquisas que a qualidade da madeira é um dos pontos a ser considerado. Neste contexto, o comprimento de fibra têm sido extensivamente estudado em coníferas e folhas da zona temperada e pouco pesquisado em espécie da zona tropical.

A madeira é constituída de elementos xilemáticos e a agregação dos mesmos existe extremamente variabilidade, sendo a madeira uma resposta da árvore ao seu ambiente dentro dos limites do seu potencial genético. É essencial que a isolação e consideração dessa variação sejam abordadas quando pretendemos estudar a influência do ambiente na qualidade da madeira.

O desenvolvimento de árvores vigorosas com madeira de boa qualidade é um dos principais objetivos das pesquisas em melhoramento florestal. Produzir árvores com excelente forma de copa e tronco não é o bastante porque a qualidade do produto final é de fundamental importância.

1 Resumo da Tese apresentada para a obtenção do grau de “Master of Science” pela Colorado State University - Fort Collins - CO, USA.
2 Instituto de Tecnologia da Amazônia - UTAM, Departamento de Engenharia Florestal, Av. Darcy Vargas, 1200, cep 69.000, Manaus - AM.

Antes que práticas de melhoramento genético possam ser seguidas numa espécie, é essencial conhecer a faixa de variação do fenótipo presente e é desejável saber a extensão e tipo de informação genética; ainda, estudos a curto prazo podem ser conduzidos para determinar a extensão de variação fenotípica nas características de importância econômica.

O esforço para prognosticar o efeito de um manejo sobre a qualidade da madeira depende de um entendimento das causas da variação nos componentes estruturais da madeira. Desde que exista uma associação entre estrutura da madeira e a copa da árvore (Donne & Dodd, 1980), uma aproximação em direção a essa assertiva é o estudo do padrão de variação na estrutura da madeira para correlação com as características da copa.

A seleção de matéria-prima que possua uma variação celular mínima é um passo importante para o controle da qualidade de produtos da madeira. Contudo, a avaliação da madeira com base nessas características é difícil devido a grande variação que ocorre entre e dentro das espécies. Assim, é necessário informações acerca das principais fontes de variação no tecido meduro para que haja um aprimoramento na avaliação da madeira e, particularmente, das folhas. Tais informações poderiam nos orientar na escolha de um método de amostragem mais seguro para avaliar a variação celular na madeira antes do processo de produção.

Um conhecimento da variação dentro da árvore também poderá responder questões sobre se o volume ou peso seco da madeira deverá ser otimizado na operação florestal. Se as decisões são baseadas exclusivamente no volume grosso, mas o peso da madeira é desejado, grandes erros podem resultar a menos que os efeitos da variação dentro da árvore possam ser avaliados (Zobel & Talbert, 1984).

Fig. 1 - Desenho esquemático mostrando as posições do tronco onde foram obtidos os corpos de prova para os estudos analíticos.
As árvores selecionadas para este estudo cresceram em seu ambiente natural perto da cidade de Manaus, AM. As espécies estudadas foram Saccoglotis guianensis Roth e Andira pavirubra Ducke. Ambas as espécies possuem aproximadamente 26 metros de altura com um tronco sustentando galhos somente perto do topo. As árvores não possuíam defeitos visíveis e foram identificadas por comparação com material do herbario do Instituto de Tecnologia da Amazônia - ITAM. A Fig. 1 mostra diagramaticamente a altura nas quais as amostras foram retiradas e sua posição em relação à copa. Sete discos de aproximadamente 05 centímetros de espessura foram retirados nos intervalos mostrados na Fig. 1, ao longo do tronco.

Uma faixa diamétrica de aproximadamente 3,8 centímetros de largura foi retirada de cada disco de tal maneira que todos os níveis estavam no mesmo plano ao longo do eixo vertical da árvore. Isto foi feito para minimizar a variação devido às diferentes condições de crescimento ao redor do tronco. A orientação correta das faixas diamétricas foi assumida marcando-se um lado da árvore desde a base até o topo antes de serrá-la. Essas faixas diamétricas foram as amostras usadas para todas as características analisadas neste estudo.

Medições dos elementos

As mensurações de comprimento das fibras e elementos de vaso foram feitas em três lâminas para cada tecido de cada amostra, com microscópio Reichert's VISOPLAN. Foram rejeitados todos os elementos que possuíam as extremidades quebradas; Lume e largura das fibras foram também determinados em material macerado, medidas diretamente pela projeção das fibras nas lâminas num aumento de 500 x, sendo a espessura da parede celular determinada como a diferença entre a largura da fibra e do lume dividido por dois. Foram realizadas 100 (cem) medições em cada amostra de fibras maceradas e 30 (trinta) medições para compreensão de elemento de vaso.

VÁSOS POR MM², ÁREA DA PAREDE CELULAR E RAZÃO W/C.

Foram confereccionadas lâminas de cortes transversais de todas as amostras sem coloração, e estas lâminas usadas para medições dos elementos de vaso por milímetro quadrado.

A percentagem da área da parede celular para cada amostra foi calculada da seguinte maneira:

\[
\% \text{ CWA} = \frac{(C - LA)/(CA)}{100}
\]

onde

\% CWA = percentagem da área da parede celular.

CA = área da célula.

LA = área do lume.

W/C = razão da área da seção transversal da parede celular pela área total da célula.

No cálculo da área da célula e lume foi assumido uma seção transversal circular e a média do diâmetro da célula e lume foram usados.

No presente estudo razão W/C definida como a razão da área de seção transversal da parede celular pela área total da célula, foi usada para indicar densidade. Essa razão é

Variação Dimensional... 263
independente dos extrativos e é um indicador apropriado da razão de volume da parede celular pelo volume da célula. Desde que numa madeira o comprimento da fibra é por vezes maior do que o seu diâmetro, uma suposição de que a fibra tem a forma de um cone cilíndrico não introduz um sêrio contrassenso. Sob essa suposição, volume celular é estimado como o produto da área transversal da célula pelo seu comprimento e o volume da parede celular é estimado como o produto da área transversal da parede celular pelo comprimento da célula. O comprimento cellular é aparentemente um fator comum na razão volume da parede celular comprimento da célula e pode ser cancelada para obter-se a razão W/C.

Fig 2 - Variação radial (medula-cômbio) do comprimento das fibras em Andira panuriflora em diferentes alturas do tronco.

RESULTADOS

VARIAÇÃO RADIAL DO COMPRIMENTO CELULAR

Muitas investigações desse aspecto de variação no comprimento tem mostrado que o valor do comprimento celular no anel próximo à medula é pequeno, tants para conferência como folhosas da zona temperada, mas aumenta rapidamente nos primeiros anéis; depois disso, a razão do aumento decresce quando um máximo no comprimento é obtido. Entretanto, existem estudos indicando uma diminuição radial no comprimento de fibras (Lee & Smith, 1916; Helander, 1933). Parameswara & Liese (1974) estudando a variação de várias espécies de madeira das Filipinas e Indonésia encontraram a bem conhecida tendência radial do aumento no comprimento na direção do cômbio. O presente estudo de variação dimensional em espécies tropicais mostra que há um decréscimo radial, com algumas flutuações, no comprimento das fibras ao longo da árvore em Andira.
parviflora (Fig. 2). A mesma variação radial foi encontrada em Saccoglossis guanensis com exceção do topo onde existe um aumento constante no comprimento das fibras (Fig. 3). Em geral, as espécies estudadas apresentaram fibras (curtas) na proximidade do câmbio.

A média do comprimento dos elementos de vasos em Saccoglossis guanensis inicialmente aumentou e posteriormente decresceu gradualmente com algumas flutuações em direção ao câmbio. Em Andira parviflora o comprimento dos elementos de vaso é maior nas proximidades da medula do que no câmbio (Fig. 4).

Fig. 3 - Variação radial (medula-câmbio) do comprimento das fibras em diferentes alturas do tronco em Saccoglossis guanensis.

Fig. 4 - Variação do comprimento dos elementos de vaso com a idade.

Variação Dimensional...
As Figuras 5 e 6 mostram a variação radial da razão W/C. Em geral há um aumento com algumas flutuações da medula em direção ao câmbio. Em Saccoglottis guianensis existe um aumento na razão W/C da medula em direção ao câmbio até aproximadamente o meio do tronco. Depois disto há primeiro um decréscimo próximo à medula e um pequeno aumento perto do câmbio. No topo há um contínuo decréscimo desde a medula até nas proximidades do câmbio. Andira parviflora também mostrou um decréscimo radial na razão W/C no topo com algumas irregularidades. Esses resultados mostram de antemão que a madeira juvenil na árvore contém células com uma razão W/C menor do que aquela exibida pelas células maduras.

Fig. 5 - Variação da razão W/C com a idade em Saccoglottis guianensis.

Fig. 6 - Variação da razão W/C com a idade em Andira parviflora.

VARIAÇÃO AO LONGO DA ÁRVORE

Elementos fibrosos

A variação no comprimento dos fios nas sete alturas é mostrada na Fig. 8. Como no caso da variação radial do comprimento das fibras, não existe um padrão definido de variação, embora o comprimento das fibras mostre uma tendência de diminuição da base para o topo. No caso dos elementos fibrosos nas proximidades do câmbio de Bucquoyella guianensis existe uma tendência de apresentar pequenas fibras na base, com aumento do comprimento em direção ao topo, com irregularidades. Este padrão não é observado para fibras distantes do câmbio as quais mantêm-se mais ou menos constantes, diminuindo de tamanho em direção ao topo. Em Andira parviflora o comprimento das fibras diminui em direção ao topo com algumas irregularidades. Assim, a variação do comprimento das fibras com a altura, nessas duas espécies tropicais, segue o conhecido padrão de aumento da base até alcançar um máximo, onde depois decresce até o topo.

Elementos de vasos

Em geral, da medula para o câmbio, o comprimento dos elementos de vaso ao longo do tronco diminui em direção ao topo com algumas irregularidades (Fig. 9). As irregularidades

Variação Dimensional...
são mais pronunciadas em *Andira parviflora* onde há um aumento da base até que um máximo é alcançado, onde depois há um decréscimo até o topo. Em *Saccoglosis guianensis* um valor máximo é alcançado quando então um decréscimo constante é observado. Um padrão similar foi encontrado por Iqbal & Chase (1983) em *Prosopis sspicigera*.

![Diagrama 1](image1)

Fig. 8. Medida da variação radial do comprimento das fibras em diferentes alturas ao longo do tronco das espécies *Saccoglosis guianensis* e *Andira parviflora*.

![Diagrama 2](image2)

Fig. 9. Variação do comprimento de elementos de vasos em diferentes alturas do tronco das espécies *Saccoglosis guianensis* e *Andira parviflora*.

268

Castro e Silva
O número de vasos por milímetro quadrado em *Saccoglossis guianensis* e *Audira parviflora* aumenta inicialmente da base, até alcançar um máximo e mantém-se mais ou menos constante quando voe a aumentar ao aproximar-se do topo (Fig. 10).

Em relação à variação radial, o número de elementos de vaso por milímetro quadrado, em ambas as espécies estudadas, não mostrou um padrão definido, embora *Saccoglossis guianensis* apresenasse maior número nas proximidades do câmbio.

Fig. 10 - Variação dos números de vasos, mm² em diferentes alturas do tronco das espécies *Saccoglossis guianensis* e *Audira parviflora*

Largura da fibra e de vaso

A largura da fibra e dos vasos tem sido pouco estudadas em comparação com investigações realizadas com o comprimento dos mesmos. Entretanto, deste que aquelas características têm uma relação direta com uma das propriedades mais importantes da madeira – peso específico, a variação dessas características é incluída neste estudo.

O decréscimo irregular na largura das fibras e elementos de vasos, da base para o topo das árvores, aqui referido, para *Saccoglossis guianensis* e *Audira parviflora*, foi observado anteriormente em outras espécies (Feuer et al. 1975; Zimmerman & Potters, 1982).

Em relação à variação radial da largura da fibra e elemento de vaso ambas as espécies mostraram um pequeno aumento com algumas irregularidades na medida em direção ao câmbio.

Variação Dimensional...
As iniciais cambiais variam em tamanho de acordo com a sua posição na árvore. Em geral, as iniciais fusiformes aumentam em tamanho com a idade do meristema, mas ao alcançarem um valor máximo, geralmente tornam-se relativamente estáveis (Bailey, 1923; Ghouse & Yunus, 1972; Ghouse & Hidavi, 1980). No caso de *Saccogloea glaucoma*, o comprimento das células inicialmente aumenta com a idade do clado, mas essa correlação se inverte depois que o comprimento alcança um valor máximo, resultando em um lento decréscimo no comprimento das células. Entretanto, o mesmo padrão não é observado em *Andira parviflora* onde, depois de ter alcançado um valor máximo, o comprimento das células diminui.

Estudos intensivos realizados por Bannan (1955, 1965, 1967) têm revelado que o comprimento das células cambiais derivadas da célula-mãe diminui quando a frequência da divisão pseudotransversal das iniciais cambiais aumenta. A evidência indica que o comprimento das fibras está relacionado com a razão de divisões pseudotransversais das células cambiais.

A influência da altura na árvore sobre o comprimento das células no xilema tem sido observada em um bom número de espécies. Nas espécies estudadas neste trabalho foi observada uma diminuição no comprimento das fibras e elementos de vasos em direção ao topo, depois de terem alcançado valores máximos numa altura de 4 a 9 metros a partir da base. Com respeito ao acréscimo em altura das árvores, o comprimento dos iniciais cambiais aumenta de maneira gradualmente da base da árvore para um valor muito mais estável e, então, declina novamente. Esta tendência pode ser modificada por fatores locais como o grau de crescimento em altura, posição dos internos, etc. (Schulze-Dewitz & Götze, 1973). O padrão de variação radial do comprimento em direção ao clado é variado ao longo da árvore, onde uma tal extensão que a redução em comprimento ocorre ao longo da árvore com um aumento ao crescimento radial conduzindo a elementos pequenos no topo da árvore (Phillipson & Butterfield, 1967). Entretanto, no presente estudo, *Saccogloea glaucoma* não sustenta na sua totalidade esta hipótese, porque existe um aumento no comprimento das fibras da base para o topo nas proximidades do clado. De alguma maneira, neste espécie as iniciais cambiais no topo não se tornam estáveis em comprimento como nas outras posições.

Existia uma tendência de pseudogás peroxídase do passado de concluír que madeiras com elementos de vasos curtos seriam mais especializados do que aquelas que possuíssem elementos de vasos longos e desde que as fibras longas eram associadas com estes, existia a sugestão de que madeiras com fibras longas poderiam também indicar uma fonte de especialização. O presente estudo com espécies tropicais sugere que uma menor proporção de extensão de fibras está associada com elementos de vasos curtos, o que contradiz a hipótese. Contudo, isto não pode ser assumido em sua totalidade porque existe a possibilidade desses elementos serem diferenciados de cambiais iniciais com diferentes comprimentos.

Interessantemente, as últimas amostras do material coletado da parte basal do tronco afastam-se daquele padrão de decréscimo no comprimento da célula que prevalece ao longo de
todo o tronco. Isto pode ser provavelmente devido a influência do sistema radicular que está se desenvolvendo na proximidade.

A área transversal da célula em *Saccoglotis guianensis* e *Andira parviflora* não mostra um padrão definido para variação radial. Isto pode ser provavelmente devido à existência de pequenas células encontradas entre as células dos raios e os elementos de vasos. A área transversal da parede celular também não mostrou um padrão regular de variação. Contudo, combinando o padrão de variação na área da parede celular e o comprimento de fibra, podemos inferir que a quantidade de material na parede celular das células derivativas das iniciais cambiais decresce da medida em direção ao cânbio.

Como mencionado anteriormente, a razão W/C, como uma estimativa da razão do volume da parede celular para o volume da célula, diminui da medida em direção ao cânbio.

Isto pode ser devido a razão de crescimento da área celular ser maior do que aquela da área da parede. Assim, a densidade da madeira pode ser aparentemente dependente da razão do volume da parede celular para o volume total da célula. Desse modo, o câmbio adulto de *Andira parviflora* produz células de baixa razão W/C no parte mais externa do tronco, podemos dizer que a parte mais externa irá ter um baixo valor de peso específico.

O valor elevado da razão da área da parede celular da fibra pela área transversal da fibra em *Saccoglotis guianensis*, devido ao decréscimo da área transversal da fibra, comumente e com um aumento na espessura da parede da fibra e um aumento no número de vasos por milímetro quadrado, sugere um decréscimo no peso específico da madeira em direção ao topo.

O número de elementos e vasos em espécies de madeira pode ser correlacionado com a concentração de reguladores de crescimento. Os reguladores de crescimento podem ter uma importante participação na atividade cambial (Gilg & Wareing, 1966). Alta concentração de auxina pode produzir madeira com grande quantidade de vasos, enquanto alta concentração de giberelina pode produzir madeira com grande quantidade de células parenquimáticas (Dolsey & Leyton, 1960). As espécies incluídas neste estudo apresentam uma boa quantidade de auxina descendo das folhas conforme evidenciado pela presença de um número um tanto alto de elementos de vaso por milímetro quadrado, sendo que *Saccoglotis guianensis* pode apresentar uma maior concentração de auxina.

A redução em diâmetros dos elementos de vasos nos galhos aqui referidos para *Saccoglotis guianensis* e *Andira parviflora*, com sido também observada previamente para outras espécies (Zimmerman & Potter, 1982). Desde que esses reduzidos diâmetros dos elementos de vasos estavam um pouco abaixo do ponto de incisão do galho com o tronco, podemos dizer que esta construção na base dos galhos pode ser, eventualmente, para impedir o fluxo de água para cima.

CONCLUSÕES

O principal objetivo deste estudo foi o de descobrir o padrão básico de alguns elementos anatômicos de *Andira parviflora* e *Saccoglotis guianensis* que ocorrem na altura e circunferência ao longo da árvore.

As seguintes conclusões podem ser tiradas:

1. *Andira* as espécies mostraram um aumento no comprimento de fibras (com algumas flutuações) da medida para a periferia.

2. O comprimento de fibra aumentou da base da árvore até atingir um valor máximo e então decresceu em direção ao topo.

Variação Dimensional... 271
3. O comprimento dos elementos de vases inicialmente aumentou e posteriormente decresceu gradualmente ou com algumas flutuações da medida em direção ao cambio.

5. O número de elementos de vases por milímetro quadrado aumentou da base em direção ao topo.

6. A espécie Saccoglossis guianensis mostrou mais vases por milímetro quadrado próximo ao cambio.

7. Valores da largura das fibras e dos elementos de vases mostraram um decréscimo irregular da base em direção ao topo.

SUMMARY

Trees of Saccoglossis guianensis Benth and Andira parviflora Ducke with approximately 26 meters high were sectioned in seven parts to study dimensions of fibers and vessels elements. In radial direction both species showed an increase in fiber length with some irregularities from pith to cambium. The shortest fibers were found in the top of the stem and where there’s the maximum number of vessels per square millimeter. It’s discussed the influence of growth regulators on the vessels elements. There is decrease in fiber length and vessels elements from base to top after it has reached a high value in determined height and an irregular decrease in width of these elements from base to top of the trees. In radial direction both species showed a small increase in width of the fibers and vessels elements. These elements are shortest in the branches and where the number of vessels per square millimeter is high for both species. The ratio W/C utilized as estimation of the ratio cell wall volume to cell volume decrease from pith to cambium. It’s presented 10 graphs and one table and discussed the factors which can have influence on the variation of elements all along the tree.

Referências bibliográficas

Castro e Silva.

Variação Dimensional...

273