Spatial and Temporal Distribution of a Tiger Beetle Guild (Coleoptera: Carabidae: Cicindelinae) Along a 105m Long Transect in the Reserva Florestal A. Duche near Manaus (Central Amazonia)

Wilfried Paarmann1, Joachim Adis2, Kirsten Lüdecke3, Nicole Tobiasch4, Claudio R.V. da Fonseca5

ABSTRACT — The spatial and temporal distribution of a guild of eight diurnal tiger beetle species was studied on a 105 m long transect near the field station of the Reserva Florestal A. Duche near Manaus (AM), Brazil. The transect followed a path that included both shaded and an open areas. Five of the species, restricted to primary forest, occurred only in shaded areas of the transect, and three species occurred in open areas. Of all eight species only two of the open habitat species showed no clear seasonality in adult activity. In six species the activity of adults was limited to the rainy season. The most pronounced annual rhythm was found in Pentatoma centralis, an open habitat species. Activity of adults was limited to October/November. First instar larvae appeared shortly thereafter. Larval development mainly took place from January to May. The third instar larva entered a dormancy which lasted up to 10 months, and which enabled the synchronisation of emerging adults with annual rainfall.

Key words: Tiger beetles, guild structure, swa terme, Amazon.

Introduction

Pearsen & Mary (1979) found that the median prey size for tiger beetle species tested was directly correlated with mandible size. Different mandible sizes in species of a cicindelid may therefore minimize interspecific competition resulting in a pattern of limiting similarity (Hutchinson ratio) for co-occurring species. Studying tiger beetle communities from 10 primary forests sites in…

1 Fachhochschule Hildesheim/Holzminden, Fachbereich Forstwirtschaft und Umweltmanagement, Bützweg 1 A, D-37077 Göttingen, Germany.
2 Max-Planck-Institut für Limnologie, AG Tierökologie, Postfach 103, 24306 Plön, Germany.
3 Instituto Nacional de Pesquisas da Amazônia (INPA), CPEN, Caixa Postal 478, 69011-970 Manaus, AM, Brasil.

the New and Old World tropics. Pearson (1980) found that at all sites the
margin length for a species and each of its most similar-sized congener
was generally greater than 1.35. These find-

ing supports the idea that the structure of a tiger beetle guild is the result of limi-
ting similarities by competition for prey (discussed also in Pearson (1988) and
Pearson & Knisley (1985), but see
Pearson & Juliano (1991)).

On the floor of non-dooded up-
land forest (pera firme) of the Forest Reserve A. Duque near Manaus (Amazonia)
we found a community of 5 tiger beetle species. Pearson (1980)
found only two out of ten sites, where a maximum of 5 species coexisted on
the forest floor. We decided to study this community as an example of the

deterministic principle (high species diversity by dense packing due to
strong niche separation; Linsenmaier, 1990) during the program "Mechana-

isms that maintain topical diversity" (German Research Foundation). The
highest diversity of tiger beetle species in our study site was found around
the field station (see Fig. 2 in Adis et al., 1998).
Along a 105 m long transect at the field station with the meteorological
station, we found 8 common terrestrial

species, all showing a similar foraging behavior. In one species (Psenocoma
ventralis) we detected great numbers of larvae on and close to the path. This

offered an opportunity to study the spatial and temporal distribution of all
species and to collect life history data of one of these.

MATERIAL AND METHODS

1. Study site

The Reserva Florestal Adolpho Duque is located about 26 km north-east of
Manaus (2°55'S, 59°50'W). It belongs to the National Institute forAmazonian Re-
search (INPA) in Manaus, Brazil.

The observed path between the

field station and the meteorological

station was 115 m long and about 1.5 m wide. We divided 105 m of this
path into seven segments of 15 m each; segments 1-4 were shaded by the
crowns of some planted trees (Carapa guarancia, Melia). Secondary
forest tree species of the genera Araceae, Piperaceae, Myristicaceae (see
Fig. 1). Segments 5-7 were open, with a shrub like vegetation on one side
and bare latosol on the other side. Figure 2 shows the transition zone between
shaded and open parts of the trail.

2. Climate

The year is divided into a rainy sea-

son (December-May; average precipitation 1550 mm) and a "dry season" (June-No-

vember; average precipitation 50 mm), but each month has significant precipita-

tion; see Ribeiro & Adis, 1984; Ribeiro & Villa Nova, 1979). Nine years of pre-

cipitation records are available for

Reserva Duque (Fig. 13; data from Ribeiro & Villa Nova, 1979).

In 1994, at the Reserva Florestal A.

Duque Mean annual temperature was

31.4°C (range 27.5-33.2°C), mean annual minimum temperature was

22.1°C (range 21.4-22.6°C); and mean annual temperature amplitude was

Paarmann et al.
9.3°C, highest in August with 11.4°C and lowest in January with 7.1°C.

3. The tiger beetle species observed

Four diurnal species of the genus Odontochila (O. cayennensis (Fab.), O. chrysa (Fab.), O. luridipes (Dejean) and O. margineguttata (Dejean)) two diurnal species of the genus Pentacoma (P. lacerdairoaey Gory and P. ventralis (Dejean)), and one species each of the genera Cerontylus and Brasiliobius (C. variegatus (Gory), B. argentata (F.)) were common on the transect path.

The following natural history data are available for each species (Pearson, 1984; Rodrigues et al., 1994; Pearson & Huber, 1995): O. chrysa, O. margineguttata, P. lacerdairoaey, P. ventralis and B. argentata have a broad distributional range from Venezuela to northern Argentina or northern Bolivia. O. cayennensis, O. luridipes and C. variegatus have a more restricted distribu-
tion in Amazonian South America. *O. camayensis*, *O. hurdipes*, *C. variegatus* and *P. laevigatii* occur on the floor of primary forest (herb films), but *P. laevigatii* also occurs on the floor of floodplain forest. *O. chrysis* and *O. marginipustulata* both occur in estates, wide paths of secondary forest, although *O. marginipustulata* can sometimes be found in primary forest. These two species are occasionally sympatric. *P. ventralis* is a species of grassy areas and extensively cleared forest patches. The *B. argentata* complex of similar species occurs generally in open upland areas, away from water (Freitag & Barnes, 1989).

4. Studies on the spatial and temporal distribution of adults

Once a month (March 94 to February 95) we captured and released all individuals we could see on the path by using an aerial net: we conducted this census for three successive days around the middle of the month, and each census day consisted of three walks up and down the transect path. Captured beetles were marked on the elytra with colour paint spots (different for each month) and before being released. The segment of the path in which each specimen was initially observed was noted. To distinguish the similar species *O. chrysis* and *O. marginipustulata* we used a hand magnifying lens to recognize a distinctive dimple at the posterior lateral part of the pronotum in *O. chrysis.*

5. Studies on larval appearance and development

An area of 26 m² of sparsely vegetated bare laterose bordering the trail (Fig. 2) contained a high concentration of *P. ventralis* larval burrows. At weekly intervals the larval activity in this area was censured using absence or presence (head of larva visible

Figure 2. Photograph of the transition zone between segment 4 and 5 of the transect (first author at left in the fenestral larval site).
in the opening of its tunnel), lacun instar (diameter of the opening) and the appearance of additional larvae. Each larval tunnel was marked with a small flag and a number. If the tunnel was open, no larva visible and the opening not cleaned, we extracted the larva. This study of larva was conducted from February 1993 to August 1994. Morphological data are given in Amst et al. (1990).

6. Rearing and breeding in the laboratory

To obtain additional information about the life history of P. ventralis we transferred larvae from Mariaus to our laboratory in Göttingen (Germany). Here we placed individual larvae in glass tubes (height 7.5 cm, diameter 2.8 cm) filled with loam to a height of 5 cm and under a temperature regime of 25°C (15hs/9hs) and a 12 hs/12 hs day/night photoperiod. Adults were kept in clear plastic containers (width 50-30cm, height 30cm) filled with loam to a height of 15cm. During daylight (12hs) the beetles could choose a preferred temperature under the irradiation zone of a desk lamp. During night time they were exposed to 23°C. As food for both larvae and adults we used Drosophila flies or small Tenebrio molitor larvae.

RESULTS

1. Spatial distribution

By habitat choice along the transect, the species can be divided into two groups: Adults of five species (C. varians, O. ovipennis, O. luridipes, O. marginipennis, P. lacordairei) occurred primarily in the shaded part and tus represent forest interior species (Fig. 3). Adults of three species (P. argentata, O. chrysis, P. ventralis) occurred primarily in the open parts (Fig. 4; see Freitag & Barnes, 1989).

Of the five forest interior species, only O. marginipennis also appeared regularly in open sites. Of the open habitat species, only O. chrysis appeared regularly in the shaded part. There is a transition zone (Fig. 5) in the path segments 4 and 5 where both species occurred together.

2. Temporal distribution

The group of forest interior species showed a strong and relatively synchronous change in seasonal abundance: High abundance of adults during the rainy season, low abundance during the dry season (Fig. 6). Among the open habitat species (Fig. 7), R. argemius showed no fluctuation of abundance correlated with annual seasons. The abundance of O. chrysis was continuously high throughout the year. P. ventralis showed a strong seasonal correlation of abundance that resembled changes in the population abundance of O. marginipennis (see Fig. 8). The adults appeared nearly exclusively during October and November.

3. Larval development of P. ventralis in the field and under laboratory conditions

Tunnels of the first and under laboratory conditions larval instar appeared mainly during December and January (Fig. 9), shortly after the disappearance of the adults. By February, larvae of the third instar appeared. From March to June the number of active lar-

Spatial and temporal distribution of a tiger ...

335
Figure 3. Spatial distribution of the forest interior species on the transect. Segments 1-4 shaded, 5-7 open.

Figure 4. Spatial distribution of the open habitat species on the transect. Segments 1-4 shaded, 5-7 open.

Paarmann et al.
Figure 5. Spatial distribution of *O. chrysis* and *O. marginellata* on the transect. Segments 1-4 shaded, 5-7 open.

Figure 6. Seasonal abundance of the five forest interior species.

Spatial and temporal distribution of a tiger...
Figure 7. Seasonal abundance of the three open habitat species.

Figure 8. Seasonal abundance of *O. chrysia* and *O. margineguttata*.

Psarmann et al.
Figure 9. Abundance of the three larval instars of P. ventralis at the fenced larval study site (20ha) from February 1993 to August 1994.

Figure 10. Duration of dormancy in last instar larvae (n=13) of P. ventralis at the study site.

Spatial and temporal distribution of a tiger...
vaec declined, and from July to November little to no active larvae were visible.

Apparently the larvae develop rapidly to reach their maximum size in the last (3rd) instar. Then they close their tunnel and stay in a larval dormancy until pupation. The longest time period between the last closing of the tunnel and the hatching of beetles under natural conditions was 10 months (Fig 10). Only two of the observed 13 larvae interrupted their "dormancy" to open their tunnels again for a short period.

The later in the season (Oct.-Dec.) that the first larval instar appeared the shorter its potential time for development into the third larval instar (Fig. 11). This could indicate a better supply of prey for the younger larvae during December than during November.

Under laboratory conditions the pupal stage lasted 9 or 10 days (n=2). The hatched beetles appeared 6 or 7 days (n=2) after hatching on the soil surface. For the remaining 29 specimens we calculated the duration of larval dormancies by subtracting 17 days (i.e., pupal stage plus hatching period) from the time between the last closing of the tunnel and the appearance of the beetle. On average they remained 205 days (range: 81-349) in dormancy.

During dry season conditions in the laboratory, larvae tended to keep their tunnel closed directly after we watered the soil. This indicates that larval dormancy under dry soil condi-

Figure 11. Correlation between the date of appearance of the first larval instar and the duration of its development to the third larval instar in P. nemoralis ty = -0.71x+20.38; p=0.005, r = -0.853; n=12.
tions in nature may be longer than measured (the time between the last closing of the tunnel and the appearance of the beetle), as larvae may enter dormancy but have to wait for the next rain to close the tunnel opening.

Fifty-six percent of the larvae kept under laboratory conditions in Germany hatched within three successive months (Sept.-Nov.). Compared to data from the other months of the year, this difference was significant (Chi²-test, p<0.01). The hatching in the laboratory corresponded with the appearance of adults under natural conditions (Fig. 12).

Five adult beetles of *P. ventralis*, which adapted to the described laboratory conditions, lived about 3.5 months on the surface (plus 7 days in the soil after hatching). The average adult life span was 104 days (min.: 88 days, max.: 113 days). The first copulation was observed 5 days after emergence.

DISCUSSION

From our results it is obvious that the species richness of tiger beetles found on the relatively short transect has been impacted by human intervention. In clearing part of the forest floor, open habitats were made which were invaded by species adapted to such conditions. Only one of the six species found in a nearby intact primary forest (*O. nigrotarsalis*) was not caught on our study transect. However this is the rarest of the forest interior species in the region.

Of the five forest species, *C. varians*, *O. cayennensis*, *O. luridipes*, and *P. lacordairei* have all been described from other parts of Amazonia as primary forest species, while *O. marginipennis* was described as a secondary forest species that entered primary forest edges only during the height of the rainy season (Pearson, 1984; Pearson & Huber, 1995; Rodriguez et al., 1994). From other of our unpublished studies in a primary forest site (Paimmare et al., unpublished), *O. marginipennis* generally uses microhabitats similar to those of the more typical primary forest species, but the adults tend to appear earlier, at the end of the dry season. They also do not avoid open habitats as consistently as the other forest interior species (Figs. 3, 6, 13, and unpublished data). While the adult abundance of the true primary forest species (*C. varians*, *O. cayennensis*, *O. luridipes*, *P. lacordairei*) is closely correlated with the mean monthly rainfall (r=-0.1, p<0.05), a comparison to the rainy season (Fig. 13). Thus the larvae can develop throughout the rainy season and avoid impact of dryness. The seasonal change in adult abundance is confirmed for the forest species to be regularly by a five year study in a primary forest site. The results of this detailed study concerning seasonal abundance and niche separation will be published elsewhere.

O. chrysis showed a comparable high and constant abundance throughout the year. From the literature it is known that *O. marginipennis* and *O. chrysis* can occur sympatrically (Pearson, 1984; Pearson & Huber, 1995). In our study site this sympatric appearance is limited to a small area at the forest border site (Fig. 5) and to the rainy season (Fig. 8).

Spatial and temporal distribution of a tiger ...
Figure 12. Appearance of adults in P. ventralis under natural conditions (Forest Reserve) and under laboratory conditions (Germany).

Figure 13. Mean monthly rainfall in the Reserva Forestal A. Duque (from Ribiero & Vilinilla Nova, 1979) and adult abundance of the seasonal tiger beetle species.
The abundance of adult beetles of *B. argentata* (Fig. 7) fluctuated irregularly, independent of the season. This may be the result of migration between the three open sites in the field station area. A few larvae of this species were found along the path at the open site, more of them at the central open site of the field station area (see also Fig. 2 in Adis et al., 1998).

P. ventralis is described as a species of "extensively cleared forest sites" (Pearson, 1984; Rodriguez et al., 1994). The seasonal appearance of adults in this species resembles very much that of the forest species *O. marginepulchra*, but is more pronounced (Fig. 13). It is limited to the months October and November. Under laboratory conditions we found an average life expectancy in adults of 3.5 months (n=5). This seems to be much shorter under natural conditions. But adults reach their sexual maturity few days after emergence. The larvae of the first instar were found shortly after the disappearance of adults, mainly during December and January (Fig. 9). The data summarized in figure 11 indicate that the conditions for the development of the first and second larval instar improve from November to December, probably even more in January. The strategy of this species seems to be a comparable rapid larval development leading to a larval dormancy in the third instar. This stage is spent in its closed tunnel for the suitable time of pupation (Fig. 10). The pupation may be caused by a combination of an endogenic component (clock system) and the signal of a climatic factor as "zeitgeber". The synchronous hatching of the beetles, also under laboratory conditions (Fig. 15), points to a strong endogenic control. *P. ventralis* seems to be a strictly univoltine species. A similar life cycle was found in *P. egregia* (Paarmann et al., 1982) from the inundation forests near Manaus. However, in this species the synchronization of life cycle with seasons is caused by a gonad dormancy in females which is induced by lower variations between the day and night temperatures due to flooding (Amorim et al., 1997a,b).

The strong seasonality in 6 out of the 8 observed species is presumably the result of selective forces caused by optimal or poor food conditions for the larvae, especially for the first instar. Only two of the species showed no clear seasonality and might represent "temporal and spatial opportunists". Most striking is the more or less stable population size of the adults of *O. chrysis*. This species has either a much higher longevity in the adult stage or its larval development is independent of the postulated seasonal change in prey abundance.

ACKNOWLEDGEMENTS

This study was part of a project supported by the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) within the project: 'Mechanismen that maximun tropical diversity' (Pa 90/15-1, 15-2, 15-3, 15-4). The monthly censuses of beetles were done by Francisco P. da Silva. Prof. Dr. David L. Pearson (Arizona State University, Tempe/USA) and Dr. Erik Arndt (Fachhochschule Anhalt, Barsing/Germany) made valuable comments on the manuscript. PD Dr. W.J. Kunk (MPI Pots/Germany) is thanked for logistic support at Manaus.

Literature cited

Spatial and temporal distribution of a tiger ...

Azêto para publicação em 17/06/98

Pauw et al.