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ABSTRACT
In the current climate change scenario, the adoption of actions aimed at reducing wildland fires and, consequently, greenhouse 
gas emissions is urgent. The use of environmental satellites to trace wildland fires is an essential instrument in the development 
of fire prevention strategies. The objectives of this study were to (a) analyze the spatiotemporal variability in fire foci detection 
in the state of Pará, Brazil; (b) identify the main differences between data from AQUA and Suomi-NPP (S-NPP) satellites; 
and (c) determine the variables responsible for changes in fire detection at municipal level. Mean annual detection of fire foci 
was of 43,488 by AQUA based on data from 2003-2023, and of 156,038 by S-NPP from 2012-2023. During the overlap 
period, S-NPP detected 4.5 times more foci than AQUA. Despite the difference, both datasets were significantly correlated. 
Most fire foci were detected in August, September and November. São Félix do Xingu and Altamira were the municipalities 
with the highest number of detections, while Bajaru and Concórdia do Pará registered higher fire foci density. Of the 144 
municipalities, 89 were classified as having extreme fire incidence. Deforested area was the variable that presented the highest 
correlation with municipal fire density, followed by pasture area, rainfall, urbanized area, forest area, agricultural area and 
demographic density. The results of this study could be used as basis for the development of public policies aiming at the 
reduction of wildland fire occurrence in Pará.  
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Variabilidade espacial e temporal na detecção de focos de queima no esta-
do do Pará, Brasil
RESUMO
No cenário atual de mudanças climáticas, é urgente adotar medidas que visem a diminuição da queima da vegetação e, 
consequentemente, da emissão de gases do efeito estufa. O uso de satélites ambientais para a detecção de focos de queima é 
uma ferramenta fundamental para o desenvolvimento de estratégias de prevenção ao fogo. Este estudo objetivou (a) analisar 
a variação no registro de focos de queima no estado do Pará, Brasil; (b) identificar as principais diferenças entre os dados dos 
satélites AQUA e S-NPP; e (c) identificar as variáveis correlacionadas com o registro de focos a nível municipal. A média 
anual de focos detectados foi de 43.488 com AQUA para o período 2003-2023, e de 156.038 com S-NPP para 2012-2023. 
Durante o período de sobreposição, S-NPP detectou 4,5 vezes mais focos que AQUA. Apesar da diferença, ambos os dados 
se correlacionaram significativamente. A maioria dos focos foi detectada em agosto, setembro e novembro. São Félix do 
Xingu e Altamira foram os municípios com maior número de detecções, enquanto Bajaru e Concórdia do Pará apresentaram 
maior densidade de focos de queima. Dos 144 municípios, 89 foram classificados como tendo incidência extrema de fogo. 
Desmatamento foi a variável com a maior correlação com a densidade de focos, seguida por área de pastagem, precipitação 
pluviométrica, área urbanizada, área florestal, área agrícola e densidade demográfica. Os resultados obtidos podem ser utilizados 
para o delineamento de políticas públicas que visem a redução da ocorrência de queima da vegetação no estado.

PALAVRAS-CHAVE: floresta amazônica; incêndios florestais; sensoriamento remoto; conservação da natureza

INTRODUCTION
Wildland fires are responsible for several environmental 
impacts, which are amplified by the effects of global warming 
(Gajendiran et al. 2023). To date, 2023 has been the warmest 
year since global temperature records started in 1850, with an 
increase of 1.18°C above the 20th-century average (NOAA 

2024). Over the period 1997-2014, modeled global fire 
carbon dioxide (CO2) emissions were estimated at a mean 
value of 2.8 billion tCO2 year–1 (Arora and Melton 2018). In 
2021, for example, Brazil’s emissions totaled approximately 
2.5 billion tCO2, of which about 50% were owed to changes 
in land use and land cover (LULC) (SEEG 2024). Pará is one 
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of the Brazilian states with the highest rate of LULC change, 
mainly due to the deforestation of the Amazon rainforest, 
contributing substantially to the emission of greenhouse gases 
(GHG). In 2021, LULC in Pará contributed with 475 million 
tCO2, about 19% of the total carbon dioxide emissions of 
Brazil (SEEG 2024). 

The replacement of vast areas of forest with pyrophytic 
grasslands is one of the most negative ecological impacts of 
fires in tropical rainforests, turning a dense evergreen forest 
into an impoverished environment populated by a few fire-
resistant tree species and a ground cover of weedy grasses 
(Nasi et al. 2002). By 2050, 10% to 47% of Amazonian 
forests will be exposed to compounding disturbances that 
may trigger a tipping point, inducing large-scale collapse, 
unexpected ecosystem transitions and potentially exacerbate 
regional climate change (Flores et al. 2024). The Amazon 
rainforest acts as a carbon sink and holds an amount of carbon 
equivalent to 15–20 years of global CO2 emissions (150 to 
200 billion tons of carbon) (Flores et al. 2024). Its degradation 
and the resulting release of GHG could threaten the survival 
of numerous species and decisively contribute to the process 
of global warming.

The use of satellites to detect wildland fires is an important 
tool for monitoring burning vegetation, especially in remote 
areas. The Brazilian Centro de Previsão de Tempo e Estudos 
Climáticos (CPTEC), at Instituto Nacional de Pesquisas 
Espaciais (INPE), generates and provides information on the 
occurrence of wildland fires based on environmental satellite 
data. Although receiving images from ten satellites that have 
optical sensors operating in the thermal-average range of 4μm 
(NOAA-18, NOAA-19, METOP-B, METOP-C, TERRA, 
AQUA, Suomi-NPP, NOAA-20, GOES-13 and MSG-3), the 
images generated during the afternoon passage of the AQUA 
satellite (MODIS sensor), processed by the “Collection 6” 
algorithm, has been used as reference by INPE since 2002. 
These images are used to compose comparable time data over 
the years and thus enable trend analysis for the same periods 
in regions of interest (White 2018; INPE 2023). Since the 
AQUA satellite has far exceeded its expected lifespan and 
will stop working in the near future, it becomes necessary to 
integrate and adjust the AQUA data with the data from the 
next reference satellite, which, according to INPE (2023), will 
be the Suomi (VIIRS sensor, afternoon passage).

Given that AQUA and Suomi (S-NPP) have similar 
overpass times and both observe the earth two times during 
the day (morning and afternoon), sampling of the diurnal 
fire cycle is similar in both (INPE 2023). Nevertheless, 
compared to the 1-km MODIS bands for fire detection, the 
VIIRS higher spatial resolution (375 m) enables the detection 
of smaller fires, as well as improved mapping of large fire 
perimeters (Li et al. 2018). VIIRS also applies onboard 
aggregation processing to compensate for pixel footprint 

enlargement with distance from nadir, which strongly affects 
its fire detection data (Cao et al. 2013).

Fire detection omission (false negative) happens more 
frequently with the AQUA (MODIS) data than with the 
S-NPP (VIIRS) data (Coskuner 2022; White 2022). This 
happens because the MODIS sensor has coarser spatial 
resolution than the VIIRS (White 2022). Previous studies 
showed that MODIS products have high omission errors in 
large fires due to obscuration by thick smoke (Schroeder and 
Giglio 2017). Nevertheless, fire omissions can happen with 
all satellites used to detect wildland fires when fires started 
and ended during the interval between the satellite passage, 
due to the presence of dense clouds above the burning area, 
in cases of surface fire under closed canopy vegetation and fire 
on mountainsides opposite to the satellite observation path 
(INPE 2023). Daytime commission (false positive) errors are 
rare and typically found over bright land surfaces in areas of 
sun glint, predominantly associated with reflective rooftops 
on large industrial buildings (Schroeder et al. 2014). Usually, 
commissions account for less than 1.2% of the total fire foci 
detected in VIIRS sensors and 1% in MODIS sensors (Giglio 
et al. 2016; Schroeder and Giglio 2017; White 2022).

Due to the above limitations in fire detection via satellite, 
especially in the MODIS sensor, the number of false negatives 
is much higher than the number of false positives. Therefore, 
above all in lower resolution sensors, the total number of fire 
foci detected represents only a percentage of active fire fronts 
(INPE 2023). In order to accurately describe and understand 
fire patterns, it is important to understand the main differences 
between the two reference satellites used by INPE for fire 
management activities in Brazil. To use the S-NPP data to 
complement the AQUA time series, which started in 2002, 
it is necessary to determine whether the data of both satellites 
are compatible and to establish an adjustment equation.    

Of all the 26 Brazilian states, Pará has the highest annual 
average of fire foci detected since satellite monitoring began in 
the country in 1998 (INPE 2023). In the Amazon rainforest, 
the use of fire is intimately related to deforestation, as the 
trees are first cut and then dried and burned (White 2018). 
Deforestation data obtained through MAPBIOMAS (2023) 
from 1987 to 2021, indicate an average area of 630,216 ha of 
primary vegetation cleared every year in the state. The high 
rate of deforestation and the large number of fires reveal the 
inefficiency of the environmental conservation public policies 
adopted in the state. 

This study had as objectives to (a) analyze the space and 
time variability in fire foci detection in the state of Pará using 
data from the AQUA (2002-2023) and S-NPP (2012-2023) 
satellites; (b) identify the main differences of the data obtained 
from both satellites; and (c) identify the independent variables 
that have correlation with fire occurrence at municipal level. 
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MATERIAL AND METHODS
Study area
Pará is the second largest Brazilian state with an area of 
approximately   1.2 million km2. Altamira is the largest of the 
144 municipalities of Pará and also the largest of Brazil, with 
159,533 km2, approximately the same size of the entire state 
of Ceará. The smallest municipality is Marituba, with an 
area of 103 km2. As of 2020, the total population of the state 
was estimated as 8.6 million, corresponding to an average 
population density of 6.9 inhabitants per km2 (IBGE 2022). 

The predominant climate in most of the state, according 
to the updated Köppen-Geiger classification, is equatorial 
monsoon (Am). There are also areas of equatorial savannah 
with dry winter (Aw) and equatorial rainforest fully humid 
(Af) (Kottek et al. 2006). The average annual precipitation 
in Pará ranges from 2,000 to 2,500 mm, and the rainfall 
pattern is well-defined, with a rainy season extending from 
December to May, and a less rainy season spanning from June 
to November (Menezes and Fernandes 2016). The average, 
average maximum, and average minimum temperatures are 
26.6 °C, 30.1 °C, and 24.5 °C, respectively (CLIMATE-
DATA 2023).

The state’s predominant biome is the Amazon, with a 
small area of   savanna in its southeastern portion. According 
to satellite imagery from 2020, most of the state’s territory 
is covered by natural forests, occupying a total area of   
954,635.19 km2 (about 76% of the state area), followed 
by pastures, with a total area of   203,760 km2. Both land 
cover types account for approximately 93% of the state area 
(MAPBIOMAS 2023) (Figure 1). Integral protection and 
sustainable use areas occupy 249,400 km2, equivalent to 20% 
of the state’s area, while indigenous lands occupy   275,500 
km2. Both protection categories account for 42% of the 
state area (FAPESPA 2018). The state’s economic profile is 
basically extractive, with a predominance of the agricultural 
and forestry sectors, which are characterized by deforestation 
and biomass burning (Paixão et al. 2019).

Data collection
Records of fire foci in the state of Pará were obtained from the 
Queimadas Program of INPE (http://terrabrasilis.dpi.inpe.
br/queimadas/), based on 21 years of data from the AQUA 
satellite (afternoon passage), from 01 Jan 2003 to 31 Dec 
2023, and 12 years of data from the S-NPP satellite, from 
01 Jan 2012 to 31 Dec 2023. The values   were quantified by 
municipality, grouped by month and year.

Figure 1. Distribution of land cover types in Pará state (Brazil). The inserts show the location of Pará (light grey) in Brazil (dark grey), and the outlines of the 144 
municipalities of Pará.  Credit: B. White. Data Source: IBGE (2020).
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The following independent variables that may have 
influenced the number of fire foci were quantified for each 
municipality: mean annual temperature; mean annual rainfall; 
population density; mean area of forest (including natural 
and planted forests, and mangroves); mean area of non-forest 
natural formations [including wetlands, grasslands, mangrove-
terra firme forest transition (apicum) and other non-forest 
formations]; mean urbanized area; mean agriculture area; 
mean pasture area; mean primary vegetation deforestation 
area; and mean secondary vegetation deforestation area. 
These variables were used due to the availability of historical 
data and due to the fact that previous studies have already 
indicated that they can influence the probability of fire 
occurrence (Suryabhagavan et al. 2016; White and White 
2016; White 2018; White 2020). The areas of forest, non-
forest natural formations, urbanization, agriculture, pasture 
and deforestation were divided by the area of the municipality 
to avoid the effect of municipality size on wildland fire 
detection in correlational analyses.

Mean annual temperature and mean annual rainfall were 
obtained from CLIMATE-DATA (2023), which is based on 
data from the European Centre for Medium-Range Weather 
Forecasts (ECMWF) collected from 1991 to 2023. Population 
density and municipality size were obtained from IBGE 
(2011, 2022). The means of each land use/cover category 
were obtained through MAPBIOMAS (2023) based on data 
from 2003 to 2023. Deforestation data was also obtained from 
MAPBIOMAS (2023) based on data from 2003 to 2020. The 
data available from MAPBIOMAS are annual and based on 
images from the Landsat satellite with 30 m resolution. For 
each year, a mosaic is created that covers Brazil, representing 
the behavior of each pixel according to the number of available 
observations, varying from 0 to 23 observations per year 
(MAPBIOMAS 2024).

Fire foci incidence classification
The municipalities were grouped according to the classification 
originally proposed by White and White (2016) and updated 
by White (2020) into six fire incidence classes, based on the 
number of fire foci detected per area by the AQUA satellite, 
afternoon passage, during a period of one year (Table 1).

Data analysis
To verify the existence of significant upward or downward trends 
in the yearly number of fire foci, and to build an adjustment 
equation between AQUA and S-NPP data, linear regression 
analysis was used. To verify the correlation between AQUA 
and S-NPP satellites, the Pearson’s correlation analysis was 
used between the total number of fire foci detected per year by 
each satellite in Pará and in each municipality (2012 to 2023). 

The influence of all the independent variables on fire 
foci density per municipality was tested using a Pearson 
correlation matrix. Only the fire foci density by the AQUA 
satellite was used due to the greater temporal data availability. 
The analyzed variables conformed to the requirements for 
Pearson’s correlation analysis (linear relationship, normal 
distribution, absence of significant outliers and adequate 
sample size).

The monthly mean values of the number of detected 
fire foci from 2003 to 2023 were initially compared 
using ANOVA (data presented normal distribution and 
homogeneity of variance) folloed by a Tukey-Kramer test for 
a pairwise comparison of the means. The monthly analysis 
was also done only using AQUA due to the greater temporal 
data availability. 

RESULTS
A total of 913,249 fire foci were detected by the AQUA 
satellite from 2003 to 2023, and 1,872,461 were detected 
by S-NPP from 2012 to 2023, resulting in annual means of 
43,488 and 156,038 foci for AQUA and S-NPP, respectively. 
Fire foci were detected in all 144 municipalities. Marituba 
had the lowest number and São Félix do Xingu the highest. 
Proportionally to their area, Bajaru and Concórdia do Pará 
were the two municipalities with the highest density of fire 
foci. These results were the same for both satellites during 
the time periods assessed. The linear regression of the 
annual number of fire foci over time indicated a significant 
downtrend from 2003 to 2023 for the AQUA satellite data (r2 
= 0.45; p < 0.01). Considering only the data for the overlap 
period (2012-2023), no significant trend was observed for 
any of the satellites (Figure 2).

Table 1. Classification of hotspot density values detected by the AQUA satellite (afternoon passage) over one year according to White (2020).

Frequency class Number of hotspots detected per year Density of hotspots

Very Low None or one hotspot for an area > 600 km2 < 0.0017 hotspots km-2 year-1

Low One hotspot for an area > 300 and ≤ 600 km2 > 0.0033 and ≤ 0.0017 hotspots km-2 year-1

Average One hotspot for an area > 150 and ≤ 300 km2 > 0.0067 and ≤ 0.0033 hotspots km-2 year-1

High One hotspot for an area > 75 and ≤ 150 km2 > 0.0133 and ≤ 0.0067 hotspots km-2 year-1

Very High One hotspot for an area > 25 and ≤ 75 km2 > 0.04 and ≤ 0.0133 hotspots km-2 year-1

Extreme One hotspot for an area ≤ 25 km2 ≥ 0.04 hotspots km-2 year-1
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During the AQUA and S-NPP overlap period (2012-
2023), S-NPP detected 4.5 times more fire foci than AQUA 
(Table 2). Despite this difference, AQUA and S-NPP yearly 
fire foci data for the whole state were significantly correlated 
during their overlap period (r = 0.95; p < 0.001). Considering 
the yearly fire foci per municipality, both datasets also were 
significantly correlated (r = 0.99; p < 0.001). Due to the 
significant correlations, it was possible to build an AQUA / 
S-NPP adjustment equation using linear regression (Figure 3).

Figure 2. Yearly number of fire foci detected in Pará state (Brazil) by the AQUA (2003-2023) and S-NPP (2012-2023) satellites. The dashed line indicates the regression 
line of AQUA detections over time, indicating a significant downward trend over the period 2003-2023. 

Figure 3. Linear regression between the total number of fire foci detected in 144 municipalities of Pará state (Brazil) by the AQUA and S-NPP satellites during 2012-
2023. The solid line indicates the line of best fit.

Table 2. Total, mean and standard deviation of the yearly number of fire foci 
detected in Pará state (Brazil) by the AQUA and S-NPP satellites. AQUA data are 
shown for its total active period and for its overlap period with S-NPP.

AQUA S-NPP

Period
2003-2023 
(21 years)

2012-2023 
(12 years)

2012-2023 
(12 years)

Total 913,249 416,315 1,872,461
Mean ± standard 
deviation 

43,488 ± 15,653 34,693 ± 8,910 156,038 ± 42,867
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Classifying the total number of fire foci according to the 
months of the year in which they were registered and using 
the ANOVA test, there was a significant variation among the 
months (F = 44.03; p < 0.001). The Tukey-Kramer test grouped 
the monthly means into five groups, with the highest numbers 
of fire foci in August, September and November (Figure 4).

Using the AQUA data to classify the wildland fire incidence 
intensity according to White (2020), 89 municipalities were 

classified as having extreme incidence of wildland fires, 41 
had very high incidence, six high, four medium, three low, 
and one very low (Table 3). The majority of municipalities 
with the highest densities of fire foci are located in the eastern 
portion of the state, while those with the lowest densities are 
located mainly in the north and northwest (Figure 5). 

According to the Pearson correlation matrix, deforestation 
was the variable with the highest correlation with fire foci 

Figure 5. Classification of the 144 municipalities of Pará state (Brazil) according to their fire foci density (White 2020), based on the number of wildland fires detected 
by the AQUA satellite (afternoon passage) in the period 2003-2023.

Figure 4. Monthly numbers of fire foci detected by the AQUA satellite in each year of the period 2003-2023. Vertical bars indicate the monthly range, and the horizonal 
mid-line the mean. Different letters indicate significative difference between the mean monthly values according to a Tukey-Kramer test.
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Table 3. Municipalities of Pará state (Brazil) ranked according to density of fire foci (FF) from 2003 to 2023 according to data from AQUA satellite, afternoon passage. 
Values for number FF are the mean ± standard deviation. Classification of fire foci density according to White (2020).

Rank Municipality
Number of FF Density

(FF km-2 
year-1)

Classification
Mean Standard 

deviation
1 Bujaru 223.05 93 0.2242 Extreme
2 Concórdia do Pará 144.90 61 0.2068 Extreme

3
São Domingos do 
Capim

307.33 134 0.1822 Extreme

4 Acará 692.71 189 0.1595 Extreme
5 Mocajuba 129.05 38 0.1481 Extreme
6 Garrafão do Norte 209.81 148 0.1305 Extreme

7
São Miguel do 
Guamá

132.57 65 0.1211 Extreme

8 Cametá 337.67 104 0.1096 Extreme
9 Moju 951.57 307 0.1046 Extreme
10 Irituia 143.90 83 0.1039 Extreme

11
Nova Esperança 
do Piriá

279.76 149 0.0996 Extreme

12 Aurora do Pará 180.33 88 0.0995 Extreme

13
Santa Maria das 
Barreiras

986.67 740 0.0955 Extreme

14 Bonito 55.14 27 0.0939 Extreme
15 Cachoeira do Piriá 221.81 94 0.0917 Extreme
16 Pacajá 1076.38 289 0.0910 Extreme
17 Santana do Araguaia 1038.33 996 0.0896 Extreme
18 Abaetetuba 143.14 50 0.0889 Extreme
19 Marapanim 71.10 29 0.0884 Extreme
20 Eldorado do Carajás 258.71 236 0.0875 Extreme
21 Bannach 251.81 243 0.0852 Extreme
22 Placas 605.10 224 0.0844 Extreme

23
São Francisco do 
Pará

39.00 26 0.0813 Extreme

24 Terra Alta 16.67 11 0.0813 Extreme
25 Magalhães Barata 26.19 10 0.0808 Extreme
26 Santa Maria do Pará 36.86 23 0.0805 Extreme
27 Mojuí dos Campos 398.90 167 0.0800 Extreme
28 Capitão Poço 231.48 162 0.0798 Extreme
29 Tucumã 197.76 145 0.0787 Extreme
30 Itupiranga 612.19 443 0.0777 Extreme
31 Ourém 43.48 26 0.0774 Extreme
32 São João da Ponta 14.86 9 0.0758 Extreme
33 Tailândia 328.90 144 0.0742 Extreme

34
Conceição do 
Araguaia

427.38 276 0.0733 Extreme

35 Igarapé-Açu 57.62 37 0.0733 Extreme

36
São João do 
Araguaia

93.29 70 0.0729 Extreme

37 Rurópolis 506.38 190 0.0721 Extreme
38 Novo Repartimento 1089.62 652 0.0708 Extreme
39 Maracanã 55.52 16 0.0687 Extreme
40 Cumaru do Norte 1165.52 1160 0.0682 Extreme
41 Marabá 1032.00 821 0.0682 Extreme
42 Curuá 96.10 41 0.0671 Extreme
43 Pau D’Arco 111.38 50 0.0666 Extreme
44 Inhangapi 31.48 16 0.0666 Extreme
45 Primavera 17.05 6 0.0659 Extreme
46 Castanhal 67.62 41 0.0657 Extreme
47 Augusto Corrêa 70.95 33 0.0645 Extreme

Rank Municipality
Number of FF Density

(FF km-2 
year-1)

Classification
Mean Standard 

deviation
48 Tomé-Açu 330.90 119 0.0643 Extreme
49 Abel Figueiredo 38.86 19 0.0633 Extreme
50 Oeiras do Pará 243.48 98 0.0632 Extreme
51 Bragança 134.00 48 0.0631 Extreme
52 Santarém Novo 14.14 7 0.0616 Extreme
53 Uruará 652.67 241 0.0605 Extreme
54 São Félix do Xingu 5067.24 3440 0.0602 Extreme
55 Nova Ipixuna 92.90 69 0.0594 Extreme
56 Floresta do Araguaia 200.52 103 0.0582 Extreme
57 Igarapé-Miri 115.90 35 0.0580 Extreme
58 Ulianópolis 289.10 157 0.0568 Extreme
59 Nova Timboteua 27.81 17 0.0568 Extreme
60 Baião 213.43 67 0.0568 Extreme
61 Novo Progresso 2161.19 1090 0.0566 Extreme
62 Rondon do Pará 462.10 221 0.0560 Extreme
63 Barcarena 72.86 32 0.0556 Extreme
64 Peixe-Boi 24.95 11 0.0554 Extreme
65 Ipixuna do Pará 288.05 108 0.0552 Extreme

66
São Caetano de 
Odivelas

25.62 16 0.0552 Extreme

67 Dom Eliseu 285.43 164 0.0542 Extreme
68 São João de Pirabas 35.81 13 0.0536 Extreme
69 Curuçá 36.05 14 0.0533 Extreme
70 Mãe do Rio 24.90 16 0.0531 Extreme
71 Breu Branco 203.90 138 0.0517 Extreme
72 Salvaterra 47.00 13 0.0512 Extreme
73 Santa Luzia do Pará 68.76 27 0.0511 Extreme
74 Tracuateua 42.00 19 0.0484 Extreme
75 Capanema 28.38 14 0.0457 Extreme
76 Vigia 18.33 11 0.0457 Extreme

77
Santo Antônio do 
Tauá

23.62 14 0.0439 Extreme

78 Viseu 216.81 88 0.0436 Extreme
79 Anapu 517.86 175 0.0435 Extreme
80 Trairão 515.86 200 0.0430 Extreme

81
São Domingos do 
Araguaia

59.52 52 0.0427 Extreme

82 Santa Izabel do Pará 30.19 19 0.0421 Extreme
83 Tucuruí 87.67 32 0.0421 Extreme
84 Água Azul do Norte 295.10 239 0.0415 Extreme
85 Medicilândia 339.76 102 0.0411 Extreme
86 Quatipuru 12.29 7 0.0406 Extreme
87 Goianésia do Pará 282.86 140 0.0403 Extreme
88 Redenção 153.67 113 0.0402 Extreme
89 Piçarra 133.05 128 0.0402 Extreme
90 Rio Maria 154.29 98 0.0375 Very high

91
Bom Jesus do 
Tocantins

102.90 50 0.0365 Very high

92
São Geraldo do 
Araguaia

111.90 101 0.0353 Very high

93 Prainha 518.71 179 0.0351 Very high
94 Portel 882.10 409 0.0347 Very high
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density in the Pará municipalities, followed by pasture area, 
rainfall, urbanized area, forest area, agricultural area and 
demographic density. Temperature and natural vegetation 
area did not correlate significantly with fire foci density. The 
results thus indicate that the municipalities with a higher 
proportion of deforested, pasture and agricultural area had 
higher density of fire foci, while those with higher mean 
annual rainfall, higher proportion of urbanized or forested 
area, and with higher population density, had lower fire foci 
density (Table 4). 

DISCUSSION
The results of this study indicate that wildland fires occur 
with high incidence in most municipalities of the Brazilian 
Amazonian state of Pará, releasing GHG into the atmosphere, 
likely contributing to global warming. Natural wildfires are 
rare events in the Amazon rainforest due to the forest high 
humidity (Ribeiro et al. 2021). Despite 76% of the state’s area 
being covered by natural forests (MAPBIOMAS 2023), fires 
occur frequently on the frontiers of agricultural expansion, 
where slash-and-burn farming methods are used to convert 
rainforests into agricultural land (Cochrane 2003; White 
2018; Ribeiro et al. 2021).

The yearly number of fire foci recorded by AQUA from 
2003 to 2023 showed a significant downward trend, but there 
was no significant trend when considering only the period 
2012-2023. During the decade spanning from 2004 to 2013, 
the Brazilian government implemented policies to combat 
illegal deforestation through the combination of monitoring 
and enforcement, supply chain interventions, and the 
expansion of protected areas, which reduced the deforestation 
rate in the Brazilian Amazon by around 70% (Brando et al. 
2020). However, over the last decade, the pressures imposed 
by cattle ranching and agricultural expansion, as well as 
the relaxation of governmental policies, have increased 
deforestation in some regions of the Amazon, preventing the 
continued decrease in wildfires and, in some areas, caused 
them to rise again (Abreu et al. 2022; White 2018). 

The comparison of detected fire foci between the AQUA 
and S-NPP satellites shows that the VIIRS sensor detects more 
fire foci than the MODIS sensor. The sensitivity of the sensors 
depends on factors such as geographic area analyzed, the 
intensity of the fires, cloud condition and timing of satellite 
overpass (Waigl et al. 2017; Fu et al. 2020). For example, 
in a study in Punjab (India), the S-NPP/AQUA ratio was 
6.5 (Vadrevu and Lasko 2018). All over South America, 
until 2021, S-NPP detected 5.13 times more fire foci than 
AQUA (White 2022). However, despite these differences, all 
studies found in the literature concluded that the data of both 
satellites are significantly correlated (e.g., Waigl et al. 2017; 
Vadrevu and Lasko 2018; Fu et al. 2020). 

Rank Municipality
Number of FF Density

(FF km-2 
year-1)

Classification
Mean Standard 

deviation
95 Brasil Novo 216.38 130 0.0340 Very high
96 Paragominas 651.19 307 0.0337 Very high

97
Brejo Grande do 
Araguaia

42.76 31 0.0332 Very high

98 Jacundá 65.52 49 0.0326 Very high
99 Curionópolis 76.19 52 0.0322 Very high
100 Terra Santa 60.48 30 0.0319 Very high
101 Santa Cruz do Arari 33.71 26 0.0313 Very high
102 Colares 11.71 7 0.0305 Very high
103 Salinópolis 6.86 4 0.0303 Very high
104 Santarém 517.86 177 0.0289 Very high
105 Juruti 236.57 87 0.0285 Very high
106 Vitória do Xingu 83.24 69 0.0269 Very high
107 Xinguara 100.10 71 0.0265 Very high
108 Cachoeira do Arari 81.00 25 0.0261 Very high
109 Óbidos 722.86 268 0.0258 Very high
110 Belterra 113.43 45 0.0258 Very high
111 Canaã dos Carajás 80.86 55 0.0257 Very high
112 Curralinho 92.19 34 0.0255 Very high
113 Porto de Moz 440.10 211 0.0253 Very high
114 Aveiro 426.81 142 0.0250 Very high
115 Monte Alegre 451.95 143 0.0249 Very high
116 Senador José Porfírio 352.48 151 0.0244 Very high
117 Palestina do Pará 22.95 20 0.0233 Very high
118 Itaituba 1421.95 416 0.0229 Very high
119 Ourilândia do Norte 303.48 207 0.0211 Very high
120 Parauapebas 144.57 95 0.0210 Very high
121 Alenquer 477.29 184 0.0202 Very high

122
Santa Bárbara do 
Pará

5.52 4 0.0199 Very high

123 Ponta de Pedras 66.24 22 0.0197 Very high
124 Altamira 3084.24 1157 0.0193 Very high
125 Muaná 71.48 26 0.0190 Very high
126 Sapucaia 23.67 17 0.0182 Very high
127 Bagre 77.90 38 0.0177 Very high
128 Benevides 2.76 2 0.0147 Very high
129 Limoeiro do Ajuru 20.62 13 0.0138 Very high
130 Soure 38.48 21 0.0135 Very high
131 Chaves 166.62 94 0.0133 High
132 Breves 119.67 39 0.0125 High

133
São Sebastião da 
Boa Vista

20.29 12 0.0124 High

134 Jacareacanga 636.10 209 0.0119 High
135 Gurupá 90.90 45 0.0106 High
136 Melgaço 56.43 23 0.0083 High
137 Belém 5.29 4 0.0050 Average
138 Almeirim 362.67 152 0.0050 Average
139 Ananindeua 0.86 1 0.0045 Average
140 Oriximiná 447.10 145 0.0042 Average
141 Faro 35.43 15 0.0030 Low
142 Anajás 16.90 17 0.0024 Low
143 Marituba 0.19 0 0.0018 Low
144 Afuá 10.76 11 0.0013 Very low

Table 3. Continued.
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In larger states or municipalities with high detection 
rates of fire foci, linear regression equation could be used to 
convert S-NPP to AQUA data or vice-versa (White 2022). 
Therefore, when the AQUA satellite stops providing data, it 
will be possible to continue the time series started in 2002 
using S-NPP data. Yet, in small areas with low fire foci 
detection rates, the data conversion may not be feasible due 
to limited data availability to build a mathematical model 
with an acceptable level of significance. Also, location errors 
can occur in satellite fire detection, mostly affecting data from 
small locations, with a location error average of 400 m ± 3 km 
for MODIS and other sensors with lower resolution, while the 
VIIRS maximum error in accuracy is 400 m (INPE 2023).

The differences between AQUA and S-NPP are owed to 
variation in the spectral bands of both satellites and, mostly, 
in their spatial resolution. AQUA and S-NPP have similar 
spectral bands covering visible and infrared wavelengths, 
but they differ slightly in width, sensitivity, and position 
within the electromagnetic spectrum, affecting fire detection 
capability (Schroeder and Giglio 2017). Discrepancies in fire 
foci detection between the two satellites can arise from these 
combined factors, the more relevant aspect being the differences 
in spatial resolution, as they affect the capability of detection of 
smaller or less intense fires. The results highlight the importance 
of considering spectral and spatial characteristics when analyzing 
fire data from different satellite sources.

Despite the intrinsic relationship between deforestation 
and fire foci, other factors also play a key role in wildland 
fire incidence. The concentration of fire foci in August and 
September follows the pattern observed in most of South 
America (White 2019). All South American countries below 
the equator, with the exception of Chile, have the highest 
number of fire foci detection between August and November, 
due to the low amount of rainfall during winter in the 
southern hemisphere, which leaves the vegetation drier and 
easier to burn (White 2019). 

The pattern shown in this study agrees with other studies 
on fire occurrence in Pará (e.g., Cordeiro et al. 2022; Santos 
et al. 2022). Determining which municipalities have higher 
fire occurrence is essential to establish prioritary sites for fire 
surveillance and other fire prevention policies (White 2018; 
White 2019). The fact that 89 of the 144 municipalities 
(accounting for about 35% of the state’s area) were classified 
as being at extreme risk of fire incidence, represents an 
enormous threat to the conservation of Pará’s natural 
ecosystems. In comparison, based on data from 2003 to 2016, 
no municipality of the neighboring state of Amazonas was in 
the extreme fire risk class (White 2018). The high frequency 
of wildland fires in Pará leaves the vegetation even drier and 
more prone to burn, creating a vicious cycle that contributes 
to global warming (Moritz 2012). For each 1 ºC increase in 
global temperature, a total of 53 ± 17 gigatons of CO2 will be 
released into the atmosphere, most of these emissions coming 
from the collapse of tropical forests (Cox et al. 2013). 

The correlation matrix showed that the density of fire 
foci was higher in municipalities with a higher proportion 
of deforested area or area occupied by pasture or agriculture. 
Land use is one of the most important variables in determining 
wildland fire risk (Soares and Batista 2007; White 2018). In 
the state of Amazonas, the municipalities with the largest 
areas of deforestation, pasture or agriculture also had a higher 
density of fire foci (White 2018). The correlation between 
deforestation, agriculture and cattle ranching versus wildland 
fire occurrence has also been shown in other studies (e.g., 
Silvestrini et al. 2011; Caúla et al. 2015; White 2018; Brando 
et al. 2020; White 2020; Reis 2021; Teodoro et al. 2022). This 
link exists because the clearing of humid forests generally starts 
by cutting down the vegetation, since the standing forest is too 
humid to burn, followed by burning and clearing a few weeks 
later, when the vegetation lost enough humidity, to establish 
a new agricultural or livestock area (Brando et al. 2020). After 
deforestation, the new agricultural or cattle ranching areas 

Table 4. Pearson correlation matrix of all variables potentially related to fire foci density in the municipalities of Pará state (Brazil). Correlation coefficients in bold are 
significant at p < 0.001; those underlined are significant at p < 0.05.

Forest 
area

Natural 
formation area

Pasture 
area

Agricultural 
area

Urbanized 
area

Deforested 
area

Mean annual 
temperature

Annual 
rainfall

Population 
density

Fire foci 
density

Forest area 1.00 -0.27 -0.73 0.05 -0.07 -0.22 -0.05 0.28 -0.07 -0.19

Natural formation area 1.00 -0.30 -0.10 -0.06 -0.31 0.11 0.28 -0.06 -0.14

Pasture are 1.00 0.01 -0.12 0.52 -0.15 -0.60 -0.13 0.36

Agricultural area 1.00 -0.02 0.27 0.03 -0.05 -0.04 0.17

Urbanized area 1.00 -0.16 0.06 0.17 0.93 -0.20

Deforested area 1.00 -0.10 -0.36 -0.16 0.77

Mean annual temperature 1.00 0.23 0.07 -0.10

Annual rainfall 1.00 0.11 -0.29

Population density 1.00 -0.17

Fire foci density 1.00
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often undergo regular controlled burning which, when not 
managed properly, can start wildfires. 

In Brazil, the use of controlled burning in farming activities 
is cultural and difficult to replace (Cabral et al. 2013). Despite 
the advantages of this technique, such as a short-term increase in 
soil nutrients, removal of unwanted vegetation, and faster grass 
regrowth; in the long term, repeated burns can leave the soil 
poorer in nutrients and more acid, affecting the sustainability 
of farming activities (Heringer et al. 2002). In Pará, most of 
the deforested areas are used for cattle ranching (Skidmore et 
al. 2021). This is reinforced in this study, as deforest areas had 
a higher correlation with pastures than with agricultural areas. 
Besides the use of burning in farming activities, in the last years 
mining extraction increased in the Amazon region and is also 
directly related to the expansion of fires (Filho et al. 2022), 
increasing the degradation of the Amazon biome.

The correlation matrix also showed that the municipalities 
with higher rainfall, forested area, urbanization and 
population density presented lower fire foci density. The 
negative correlation between rainfall and fire foci was already 
expected, as vegetation moisture content increases with 
rainfall. Larger and densely populated cities usually have less 
vegetated areas, consequently there is a lower probability 
of wildland fire occurrence (White and White 2016). The 
municipalities that presented the highest percentage of its 
areas covered with forests also presented less fire foci density, 
since the Amazon forest, especially in well conserved areas, is 
more resistant to natural and human-induced fires compared 
to deforested areas (Nepstad et al. 1999). 

Due to the environmental impacts of climate change, 
implementing effective measures to reduce wildland fire 
occurrences is essential for minimizing associated greenhouse gas 
emissions. Rising global temperatures lead to drier conditions, 
prolonged droughts, and an increase in the frequency and 
intensity of heatwaves, making vegetation drier and more 
susceptible to igniting and sustaining fires (Bowman et al 2011). 
Additionally, climate change has intensified El Niño-Southern 
Oscillation (ENSO) events, which are also associated with an 
increase in fire occurrence (Teodoro et al. 2022).

To minimize the occurrence of wildland fires in Pará, 
it is essential to enforce legal penalties for illegal burnings 
as mandated by law, and to consistently implement 
environmental education activities. Knowledge about the 
importance of the forest for climate regulation, for the 
conservation of biodiversity and even for the long-term 
sustainability of farming in the Amazon is fundamental. 
While coercive measures may have some positive effect, 
only through education the situation can change in the long 
term, promoting sustainable practices and the preservation of 
natural resources (Monroe et al. 2020). The creation of new 
conservation units and the delimitation and consolidation 
of indigenous lands also contribute to preserve native forests 

and prevent human-induced wildfires as, in general, such 
sites have less fire occurrence than non-protected areas (Silva 
Junior et al. 2022). In this context, it is strategic to create new 
conservation units near agricultural frontier areas, to prevent 
further expansion.

CONCLUSIONS
Despite the number of fire foci in the state of Pará exhibited 
a declining trend from 2003 to 2023, in the last decade this 
decline has plateaued. As a result, Pará remains as one of 
the Brazilian states with the highest wildland fire incidence. 
During the overlap years of AQUA and S-NPP satellite data 
(2012-2023), S-NPP detected 4.5 times more fire foci than 
AQUA, yet the data from both satellites were significantly 
correlated. The highest fire foci detection occurred in 
August, September, and November, highlighting the need 
for fire prevention and mitigation efforts, mostly during these 
months. The majority of municipalities in Pará, particularly 
those situated in the eastern portion of the state, exhibited 
an extremely high incidence of fire foci. The significant 
correlation between fire foci density and deforestation, pasture 
and agricultural areas indicates that, after deforestation, new 
farmlands continue to be burned regularly. The results of 
this study underscore the urgency of implementing public 
policies aimed at reducing wildland fire occurrence in the 
state. Measures such as increasing the number of protected 
areas, enhancing protection of indigenous lands, intensifying 
inspections and fines by environmental agencies, and 
implementing environmental education initiatives could yield 
positive outcomes, particularly when targeted at municipalities 
most vulnerable to fires. Only by applying these measures it 
will be possible to conserve the Amazon forest to minimize 
the effects of global warming.
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