Aspectos do uso da descarga do órgão elétrico e eletrorrecepção nos Gymnotoidei e outros peixes amazônicos

Resumo

Após fazer-se um estudo sobre aspectos gerais de famílias, gêneros e algumas espécies de Gymnotoidei e outros peixes elétricos amazonianos, bem como sobre seus habitats e hábitos de vida, analisam-se os órgãos elétricos e respectivas descargas em várias espécies. Procuram estabelecer-se as funções da descarga do órgão elétrico, (DOE) na vida do animal, correlacionando-se a mesma com o comportamento e outros eventos. Em seguida, estuda-se a eletrorrecepção, seus órgãos dos sentidos especiais e processamento cerebral, inclusive o uso de eletrorrecepção por peixes não elétricos. Conclui-se o trabalho, interpretando-se o possível significado ecológico e prático dos fatos observados.

INTRODUÇÃO

A bacia amazônica é o ambiente natural de um grande e notável grupo de espécies de peixes, os Gymnotoidei, os quais possuem, todos, órgãos elétricos. Além da conhecida enguia elétrica, muitas outras espécies semelhantes dente incontáveis milhões de peixes, estão descarregando fracos pulsos elétricos na água, noite e dia, durante toda a vida, numa frequência de poucos até mais de mil pulsos por segundo.

O Electrophorus electricus, a enguia lendária, desperta um especial interesse. Como os outros peixes fortemente elétricos, o “catfish” do Nilo, Malapterurus e a raia elétrica marinha, Torpedo — os quais pertencem a dois grupos não relacionados — sua estranha capacidade de excitar tanto a sensação quanto a contração foi percebida, senão compreendida, muito antes de Benjamin Franklin ter empinado seu papagaio durante uma tempestade. O poder da enguia elétrica tem despertado tanto respeito que, entre os caboclos que vivem ao longo dos rios do Amazonas, ainda existe a crença de que sua descarga ao redor da base de uma palmeira pode fazer com que as frutas caiam. (1)

Igualmente notáveis são as outras espécies de gimnotóideos com nomes comuns, como sarapú, itú, tovira, peixe espada e espírito-negro. A descarga de seus órgãos elétricos (daqui para frente apenas DOE) é demasiado fraca para ser sentida, muito menos para poder ser ofensiva ou defensiva, e é usada para dois outros propósitos — para a detecção de objetos — alimento, plantas, obstáculos, cavidades ou de outra espécie. Estas funções requerem um sistema nervoso altamente desenvolvido para a percepção de mudanças muito pequenas no fraco campo elétrico da DOE e também para o controle da DOE, pulso por pulso.

A capacidade para detectar campos elétricos extremamente fracos, na água, não está confinada nas poucas famílias que possuem órgãos elétricos e geram DOEs. Vários grandes grupos de peixes — embora seja minoria entre todos os peixes — são receptores mas não emissores, pelo menos de pulsos não especializados. Todos os peixes, como de fato todos os seres vivos, dissipam alguma corrente elétrica, ao menos como uma espécie de escalapamento dos processos internos, e este pequenoíssimo sinal é usado pelos peixes eletrorreceptivos para encontrar a presa. No Amazonas, nove famílias de Siluroidei (em in-

(*) — Coordenador do artigo de revisão.
(**) — Supervisor da tradução do original em inglês, a cargo do pessoal do INPA.
(1) — Temos sido questionados a respeito da plausibilidade deste fato. Considerando que apenas uma fração mínima do corrente do peixe deverá passar através da determinada região como tecido de sustentação do fruto, é altamente improvável que estes pulsos elétricos, que são de curta duração, possam exercer tal efeito.
glês “catfish”, no Brasil surubim, culú-culú, caparari, bagre, piraíba, etc.) mais os Elasmo-
branchia residentes e visitantes (tubarões e raias) possuem delicados eletroreceptores na pele.

Este trabalho tem por objetivo introduzir um aspecto raro mas significativo de comportamento e ecologia. É uma atraente pesquisa em prática na Alemanha, na Holanda, na Inglaterra, na França, nos Estados Unidos, na Rússia e em outros locais, inclusive no Brasil. Cientistas que vivem perto dos habitats naturais do peixe elétrico têm oportunidades únicas para aplicar estas especializações a problemas gerais da biologia de peixes e águas naturais.

ASPECTOS GERAIS DE FAMÍLIAS, GÊNEROS E ALGUMAS ESPÉCIES

A. GYMNOTOIDEI

Todos os peixes elétricos de água doce do Novo Mundo pertencem a esta subordem da ordem Cypriniformes e aparentemente todos os membros da subordem são elétricos. Para o propósito de nosso trabalho, é importante dizer que aparentemente todas estas espécies também possuem eletroreceptores — a julgar pela amostra das espécies, que têm sido estudadas e que são algumas em cada uma das famílias conhecidas. Todos os gimnotídeos são delgados e alongados, sem nadadeira dorsal mas com uma nadadeira anal extraordinariamente longa, lembrando a lâmina de uma faca pontuda daí o nome de “peixe-espada” (Fig. 1). Uma família tem a forma de uma enguia.

Seis famílias são reconhecidas pelas mais recentes autoridades (Mago-Lecea, 1976), conforme relação abaixo, com alguns de seus gêneros representativos.

1. Electrophoridae. A enguia-eletrica, compreendendo o gênero Electrophorus (“poraque”), forma uma família própria. É o maior gimnotídeo, o único com alta voltagem, capaz portanto de usar a descarga para ataque ofensivo ou defensivo. Possui também órgãos elé-
tricos separados de baixa voltagem, que emitem pulsos numa baixa frequência, irregularmente, para eletrolocalização e eletrocomunicação.

2. Gymnotidae. O gênero comum Gymnotus (sarapó ou carapó) é um grupo euritópico, largamente distribuído, de espécies muito semelhantes. G. carapo tem sido muito estudado. É um peixe de pulsos (definido mais abaixo) de frequência média (cerca de 50 por segundo) e pode atingir mais de 45 cm, alimenta-se não apenas de invertibrados mas também de peixes de vários centímetros de comprimento.

3. Rhamphichthyidae. Este grupo de peixes de frequência média inclui o gênero Rhamphichthys, que atinge mais de um metro de comprimento, e Gymnorhamphichthys, o mais nitidamente circadiano de um grupo geralmente noturno. Ambos os gêneros normalmente ficam imóveis sobre o fundo, durante o período de repouso, sem procurar manter uma postura com o dorso para cima.

4. Hypopomidae. Este é um grupo mais diversificado de peixes de frequência de pulso: baixa (<30 por segundo), média e alta (>100 por segundo), incluindo muitas espécies de Hypopomus, Hypopygus, Parapygus e Steatogenys. Existe uma acentuada diferença entre as espécies na taxa de repetição e uma tendência para correlacionar inversamente este fato com a duração do pulso; permitindo presumivelmente que, espécies de pulsos simpátricos, reconheçam os sinais específicos de sua própria espécie.

5. Sternopygidae. Esta é a primeira família de espécies produtoras de ondas (em oposição a pulsos em nossa lista). Sternopygus é um gênero de baixa frequência (70-140 por segundo), portanto com o pulso mais longo da subordem (acima de 7 ms). Eigenmannia de várias espécies têm uma descarga de menos de 200 a mais de 500 por segundo, e são bons exemplos de espécies que ficam suspensos na água, com contínuas ondulações da nadadeira anal. Uma onda caudal e outra rostral encontrando-se e cancelando-se na parte me-

Bullock et al.
Fig. 1 — Peixes gimnotídeos. São mostrados exemplos de 4 gêneros em 2 famílias comuns no sistema do Amazonas
diana do peixe. Este gênero também é um bom exemplo de grupo gregário, já que a maioria dos outros gimnótoides é territorial ou mantém espaçamentos entre si.

6. Apterontididae. Estes são os peixes de alta frequência, produtores de ondas (cerca de 700-2100 por segundo), notáveis também por possuírem os ritmos mais regulares, em repouso, conhecidos no mundo vivo. As pequenas modulações de frequência, sob controle cerebral, possuem significado comunicativo. Gêneros comuns na Amazônia incluem Apterontus, (antigamente Sternarchus), Sternarchella, Sternarchorynchus, Sternarchorhamphus, Sternarchogiton e Porotergus.

B. OUTROS PEIXES ELETRORRECEPTIVOS

Orgãos dos sentidos especializados na detecção de fracos campos elétricos na água têm sido “inventados” pela evolução muitas vezes — e não apenas nos vários grupos não relacionados de peixes que desenvolveram órgãos elétricos (Rajidae, Torpedinidae dos Elasmobranchia; a família Astroscopidae de teleósteos marinhas; os teleósteos africanos de água doce dos Mormyridae, Gymnarchidae e Malapteruridae, os teleósteos de água doce da América tropical da superfamília Gymnotoidei), mas também em outros. Estes incluem todos os outros Elasmobranchia (tubarões e raias), principalmente marinhas, mas também as raia de água doce, Potamotrygon e Paratrygon da América do Sul. Entre os peixes ósseos, o maior grupo eletrorreceptivo é o dos Siluroidei (Fig. 2), uma superfamília que abrange mais de uma dúzia de famílias, incluindo o nove na América do Sul e milhares de espécies. De acordo com Bates (1964), a fauna extraordinariamente rica de peixos da América do Sul (i.e. a lista das espécies) é 40% de siluroídeos. Alguns dos mais comuns ou melhor conhecidos são os Pimelodidae, incluindo Sorubim, Pseudoplatystoma (caparari) e Brachyplatystoma (piraiba), os Doradídeos, incluindo Doras e Oxydoras (cuí-cuí), os Callichthyidae, incluindo Corydoras, os Loricariidae (cascudos), incluindo Ancistrus (barbadinhos) e Piecostomus, os Trichomycteridae (Pygidiidae), incluindo Vandellia (candiru).

Entre outros peixes, todos da América do Sul e outras partes, existem evidências, sugestivas ou conclusivas, de que a eletrorrecepção é importante para a sobrevivência e o comportamento de muitos peixes. De fato, a presença de órgãos elétricos em peixes pode ser vista como uma adaptação evolutiva para sua sobrevivência em ambientes de água doce. A eletrorrecepção é particularmente importante para peixes que vivem em ambientes onde as condições físicas variam drasticamente, como em rios e lagos. A capacidade de detectar pequenos campos elétricos pode ajudar a peixes a evitar predadores, encontrar comida e comunicar-se com outros peixes.

Bullock et al.
cepção também ocorre nos Chondrostei, incluindo Scaphirhynchus (esturjão), Polyodon ("spoonbill"), Dipnoi, incluindo Lepidosiren (pirambóia, peixe pulmonado e possivelmente mesmo em alguns anfíbios da ordem Gymnophiona (=Apoda, Caeciliidae, cobra de duas cabeças).

A eletrorrecepção não é conhecida em invertebrados ou em outros vertebrados aquáticos. Em vertebrados terrestres, incluindo a espécie humana, há alguma razão para crer que, mesmo se nenhum órgão de sentido está presente para detectar campos elétricos aplicados externamente, pode ser normal algumas células do sistema nervoso serem influenciadas por fracas correntes no tecido. Portanto, os mecanismos que estudamos nos estranhos peixes podem ter um mais amplo interesse neurobiológico.

ASPECTOS GERAIS DE HABITATS E HÁBITOS DE VIDA DOS GYMNOTOIDEI

Entre as seis famílias e dezenas de géneros existem espécies que vivem em igarapés e rios, em lagos calmos ou igapós, sobre fundo de areia e sobre lodo, em água branca, água negra e água azul (cristalina), em estuários de alta condutibilidade (ilha de Marajó: >2000 μhos) e em águas de baixo teor mineral, de condutibilidade extremamente baixa (< 10 μhos). Não quer dizer que os peixes eletrorreceptivos, ou mesmo os chamados peixes-eletrônicos (por possuírem órgãos elétricos) vivam caracteristicamente em águas opacas, embora, sem dúvida, a maioria deles o faça. O mesmo ocorre também com peixes não-eletrorreceptivos.

Nosso conhecimento da distribuição exata das espécies é tão limitado que não podemos dizer se existem muitas espécies particulares confinadas à água negra ou branca, por exemplo. Podemos dizer que existem muitas que ocorrem tanto em uma quanto em outra, e portanto em águas de condutibilidade relativamente mais baixa e mais alta. Algumas espécies, tais como Electrophorus electricus, Gymnotus carapo, Apterodon pubifrons (mais conhecido no Brasil como ituí-cavalho ou touro-cavalho) e Eigenmannia virescens (conhecido como sarapó-branco) parecem ter uma distribuição geográfica muito ampla. Sem dúvida outras são tão raras quanto locais, mas as amostragens têm sido tão esporádicas e a taxonomia é tão pouco conhecida, que não se pode confirmar esta suposição. É muito necessário que se façam coletas sistemáticas em muitas localidades e habitats, com identificação adequada das espécies.

A maioria das espécies está sujeita a grandes mudanças sazonais, com a subida e a descida nos níveis da água, a inundação de enormes áreas de florestas e mudanças drásticas em tipos e disponibilidade de alimento.

É provável que muitas espécies sejam especialistas alimentares, por exemplo buscando alimento ao redor de folhas de plantas aquáticas ou raizes de plantas flutuantes, ou entre o folhado do fundo ou no lodo. A julgar pela experiência com os grupos mais bem conhecidos, pode esperar-se que especialistas extremos em alimentos e em associados e inimigos não sejam raros entre os gimnotóides. Todos os gimnotóides parecem ser carnívoros e a maioria alimenta-se de insetos e crustáceos, embora as espécies maiores predem peixes — talvez incluindo outros gimnotóides. Electrophorus e Gymnotus apanham e consomem peixes elétricos pequenos em tanques, mas isto não nos auxilia muito na estimativa do grau de uma tal predação na natureza.

Sabemos menos ainda a respeito de outros inimigos dos gimnotóides e presumivelmente eles devem precisar escalar de um grande grupo de predadores, como os siluróides. Em várias localidades, métodos de coleta que apanham todos os peixes em vários metros cúbicos de água rasa (cerca de 1 m de profundidade), trazem um grande número de indivíduos e a maioria deles pode ser gimnotóides. Isto poderia dizer que o grupo possui significado econômico como uma parte substantiial da biomassa disponível para os membros mais altos da cadeia alimentar.

ÓRGÃOS ELÉTRICOS E DESCARGA DO ÓRGÃO ELÉTRICO EM VÁRIAS ESPÉCIES

No peixe-eletrônico, a descarga elétrica é produzida por uma agregação de tecidos especializados, que constituem o órgão elétrico. A descarga é produzida por células, conhecidas
como eletrócitos, que são células musculares modificadas, ou, em certos gêneros, neurônios especializados. Os órgãos elétricos formados por eletrócitos derivados de células musculares são “miogênicos” (evoluídos a partir do músculo). Os que são formados por eletrócitos derivados de neurônios são “neurogênicos” (Fig. 3).

Os órgãos elétricos miogênicos evoluíram independentemente em vários e diferentes grupos de peixes. Na família Torpedinidae dos elasembrânquios (raias), os eletrócitos evoluíram a partir da musculatura branquial. Outras famílias de elasembrânquios, os Rajidae (raias), possuem órgãos elétricos derivados dos músculos da cauda. No siluroide Malapterurus, o “catfish” elétrico, o órgão evoluiu desde o músculo peitoral. A família Astroscopidae de teleósteos marinhos, os “stargazers”, tem órgãos evoluídos a partir de músculos normalmente envolvidos no controle do movimento do olho. A maioria das espécies de peixe elétrico pertence aos Mormyiformes africanos e aos Gymnotoidei da América do Sul; nesses grupos os órgãos miogênicos evoluíram desde músculos axial e da cauda.

Orgãos elétricos neurogênicos ocorrem apenas na família Apteronotidae (inicialmente Sternarchidae) da superfamília Gymnotoidei da América do Sul (Fig. 3B). Estes órgãos são um resultado da evolução secundária de órgãos miogênicos. Isto ocorreu por degeneração da parte miogênica do órgão e especialização dos neurônios que inicialmente o enervaram.

Orgãos miogênicos são capazes de produzir descargas mais poderosas de que os órgãos neurogênicos. Na enguia-electrica (Electrophorus), o órgão miogênico pode descarregar rapidamente (1 ms) uma corrente de 1 amper numa voltagem de 500 volts (Fig. 3A).

Fig. 3 — Órgãos elétricos. São mostrados esquematicamente exemplos das células geradoras de corrente e sua ineração em 2 tipos muito diferentes de órgãos elétricos, ambos dos gimnotóides. A. A enguia elétrica com seus órgãos de alta e baixa voltagem: o esquema em maior aumento mostra os compartimentos do tecido conectivo organizado serialmente, cada um contendo uma camada de eletrócitos com uma especialização de suas superfícies rostral e caudal, de tal modo que apenas uma é despolarizada pela chegada do impulso nervoso. Cada uma destas membranas pode contribuir com mais de 0,1V (de Altamirano et al., 1953). B. O ittú-cavallo, uma espécie onduladora de alta frequência e baixa voltagem; seu órgão consiste de terminações nervosas especializadas dos axônios efetuadores. Os nervos repetidos a cada segmento vertebral, orientados na mesma direção adicionam a corrente de seus grandes nódulos de Ranvier (da Bennett, 1971).
A vantagem dos órgãos neurogênicos é que eles podem descarregar mais frequentemente do que os órgãos miogênicos. Isto decorre especialmente devido à capacidade dos neurônios de descarregar em taxas mais altas do que as células musculares. Certas espécies dos apetornetídios descarregam o órgão elétrico a mais de 1800 vezes por segundo. Fazem isto, dia e noite, durante toda a vida.

Os eletrócitos miogênicos estão, geralmente, entre as maiores células do animal e podem ser em forma de fita, disco ou fuso. Frequentemente estão dispostos em pilhas, com todas as células orientadas no mesmo sentido. Esta disposição é comum na maioria dos órgãos miogênicos e parece ser um resultado da evolução convergente para permitir uma produção máxima de voltagem pelo órgão.

A enguia-elétrica possui três órgãos elétricos: o de Sachs, de Hunter e o órgão principal. O órgão de Sachs e a porção posterior do órgão de Hunter podem ser descarregados sem uma descarga acompanhante do órgão principal. Esta descarga é de baixa amplitude (100 V) e provavelmente é usada mais para a detecção da presa do que para a sua captura. A notória descarga de 500 volts é produzida quando todos os órgãos descarregam simultaneamente; a maior contribuição é do órgão principal. A maior parte da corrente produzida pela descarga de alta voltagem é canalizada diretamente para o ambiente, reduzindo assim o efeito sobre os tecidos do próprio animal, mas não será surpreendente descobrir que o sistema nervoso central do animal possui adaptações especiais que o tornam tolerante às correntes residuais que devem fluir através dele.

Os eletrócitos (“eletroplacas”) do órgão principal na enguia-elétrica são em forma de fita, comprimidas rostro-caudalmente e se estendem lateralmente desde a linha mediana. No adulto existem cerca de 6.000 eletroplacas dispostas em série, em uma coluna rostro-caudal. Existem cerca de 25 dessas colunas dispostas em paralelo para formar o órgão principal. Como a maioria dos outros eletrócitos miogênicos, estes são fisiologicamente polari-

zados. As duas faces dos eletrócitos diferem, em termos de sua excitabilidade elétrica. A face posterior dos eletrócitos da enguia é inervada, electricamente ativa e produz um pico de potencial elétrico devido ao sódio em resposta ao sinal de comando neural. A face anterior possui uma baixa resistência e é electricamente inexcitável. Combinada com tecidos acessórios isolantes, esta polarização maximiza a produção da corrente elétrica. Parcialmente, devido a esta propriedade de polarização do eletrôncito, o estudo dos vários tipos de órgãos elétricos conduziu a importantes revelações a respeito das propriedades das células excitáveis.

Em células musculares normais, a contração é iniciada por um rápido evento elétrico que se propaga através da célula. Numa célula única, a amplitude de pico a pico deste evento elétrico é de 80 a 100 mV. Este evento, o potencial de ação do músculo é gerado como um resultado de uma estimulação sináptica proveniente de um neurônio que traz informação do sistema nervoso central. A maioria dos eletrócitos, embora não todos, assim como as células musculares das quais são derivados, produzem um potencial de ação tucu ou nada quando excitados pela informação carregada pelo neurônio inervador. Com os eletrócitos dispostos em série, como pilhas em uma lanterna, e estimulados simultaneamente, as voltagens das descargas dos eletrócitos individuais se somam. Se não ocorre curto circuito das descargas, as 6.000 eletroplacas dispostas serialmente na enguia-elétrica adulta produzirão uma descarga elétrica somada de 450 a 600 volts, o que de fato ocorre.

Com base na descarga de seus órgãos elétricos, os peixes elétricos são classificados como pulsadores ou onduladores (Fig. 4). Os pulsadores produzem uma descarga curta semelhante a um pulso, a intervalos relativamente longos e irregulares. Dependendo da espécie, um pulsador descarregará seu órgão elétrico desde poucas vezes por minuto até mais de 80 por segundo. Os onduladores descarregam numa frequência constante para produzir um campo elétrico de tipo semelhante à onda senoidal. A regularidade dos intervalos de descarga é notável; é suficientemente estável.
para ser o mais acurado dos relógios biológicos. Depende da espécie, um onduador descargará cerca de 100 vezes por segundo até mais de 1.800 por segundo.

Os pulsadores possuem uma considerável amplitude para variar a taxa de descarga. Quando eles estão ativos, alimentando-se, perturbados, ou de outro modo excitados, eles podem aumentar a taxa de descarga em várias centenas por cento. Uma razão plausível para este aumento dessa taxa associada ao estímulo, é que o peixe interroga seu ambiente mais frequentemente para detectar objetos e dessa forma obter a informação necessária à sobrevivência.

Os onduladores normalmente não alteram a taxa de descarga em mais do que cerca de 10%, e apenas sob circunstâncias particulares (ver RES em C do capítulo seguinte). O ondulador constantemente obtém informações.

Fig. 4 — Tipos de descargas de órgãos elétricos. São mostrados vários exemplos de gimnotoídes da América do Sul para ilustrar a variedade de taxas de repetição e formas de ondas. As primeiras 4 espécies pertencem ao grupo chamado de "espécies pulsadoras", porque o intervalo entre as descargas é relativamente longo. As últimas 3 espécies pertencem ao grupo chamado de "espécies onduladores", pois o intervalo é aproximadamente igual à duração da descarga. As DOEs são mostradas simultaneamente em escalas de tempo mais lentas ou mais rápidas (de Hagihara & Morita, 1963).

556 — Bullock et al.
sobre o ambiente numa alta taxa, e as mu-
danças na frequência das descargas estão as-
soociadas mais estreitamente com comunica-
ção social do que com detecção de objetos.

O órgão elétrico descarrega em resposta a um sinal de comando do sistema nervoso central. Este sinal origina-se em um núcleo de células localizado na porção do cérebro chamada bulbo e, com exceção do “catfish” elétrico, é transmitido à medula espinhal por outros neurônios. No “catfish” elétrico existe-
em apenas duas células neurais de comando na medula espinhal, e cada uma delas se ramifica profusamente para inervar todos os ele-
trócitos de cada lado do corpo.

O órgão elétrico descarrega uma vez para cada sinal de comando. Na enguia-elétrica, há exceção, pois uma série de sinais de coman-
do de baixa frequência produz a descarga elé-
trica fraca. O desencadeamento de um com-
mando de alta frequência causa potenciais de
junção sub-liminares nos elétrócitos do órgão principal e na parte anterior do órgão de Hun-
ter; estes potenciais imediatamente somam-se para produzir uma descarga de alta voltagem, a qual então segue os sinais de comando na proporção de 1:1.

Uma descarga máxima será produzida quando todos os elétrócitos descarregarem si-
multaneamente. Isto significa que o sinal de comando deve eficazmente chegar aos vários elétrócitos simultaneamente. Existem dois
modos principais pelos quais a descarga sin-
crônica de elétrócitos distribuídos espacial-
mente pode efetuar-se: a) pelo comprimento
constante do caminho neuronal dos núcleos de
comando aos elétrócitos, com um caminho di-
reto aos elétrócitos distais a um caminho em
circuito aos elétrócitos proximais, e b) pela
gradação nos tempos de condução, com uma
condução mais rápida do núcleo de comando
aos elétrócitos distais do que aos proximais.

Na enguia-elétrica, a sincronia é efetuada
pelos tempos de condução das fibras inerva-
doras. As fibras que inervam os elétrócitos an-
teriores (fisicamente mais próximos ao nú-
cleo de comando) possuem menor diâmetro e
velocidade de condução mais baixa do que as
fibras que inervam os elétrócitos mais poste-
riores.

Aspectos do...
Consideraremos apenas o caso de eletrolocação ativa baseada na distorção do campo de DOE por heterogeneidade de impedância (Fig. 5). Esta notável capacidade dos peixes elétricos, como os gimnotóides, é um ativo sistema sensorial eficiente para centímetros, ou melhor, cerca de um ou dois comprimentos de corpo. Com relação a esta limitação ao campo próximo, ela difere da ecolocalização em morcegos, golfinhos e alguns pássaros (assim como pelo fato de que a energia emitida é medida pelos receptores em termos de intensidade local em vários pontos do corpo e não em termos de tempo de retorno, o qual é virtualmente instantâneo). Ainda temos apenas informações insuficientes a respeito da capacidade de eletrolocação em relação à resolução, discriminação da forma etc. E certo que objetos de impédâncias consideravelmente diferentes da impédância da água — e.g. grava-
tos, podem ser detectados a uma distância de um comprimento de corpo, mesmo que sejam de apenas poucos milímetros de diâmetro. Do mesmo modo, pequenas aberturas numa rocha ou num emaranhado de raízes podem ser detec-
tadas. Objetos maiores podem ser detectados, mesmo que suas impédâncias sejam ape-
nas levemente diferentes da impédância da água. Evidências fisiológicas dos receptores tornam provável que pelo menos o peixe ondu-
lador pode distinguir resistência ohmica de reatância capacitativa. Ainda não está claro como alimentos pequenos, e.g. zooplâncton, podem ser localizados pelo sentido elétrico. Parece que a eletrolocação é útil para encon-
trar alimento, para detectar outro peixe e para evitar obstáculos ou detectar fendas.

A capacidade ativa de eletrolocalizar obje-
tos em seu ambiente e passiva de detectar si-
nais elétricos fracos, permite ao peixe elétrico,
como os gimnotóides, viver em águas de
pouca visibilidade, ser mais ativos durante a
noite e permanecer escondidos durante o dia.
Desta forma, eles minimizam a captação por
predadores visuais, como ciclóides e siluró-
ides.

A eletrolocação ativa baseia-se no seguin-
te princípio. A corrente da descarga do órgão
elétrico flui sucessivamente através da pele,
da água que circunda o animal e volta através
da pele. Os eletrorreceptores estão localiza-
dos em poros na superfície do corpo e agem
como monitores das intensidades locais do flu-
xo da corrente transcutânea. Objetos próxi-
mos da superfície do corpo do animal inten-
sificarão ou atenuarão o fluxo da corrente transcutânea local, conforme sua resistividade
seja mais baixa ou mais alta do que a da água
circundante. Estas mudanças locais nos pa-
drões de fluxo representam a "imagem elétri-
da" dos objetos. A intensidade e o contraste
de tais imagens são uma função da resistên-
cia relativa da pele e geometria do corpo. Por
exemplo, um longo filamento caudal, típico pa-
ra muitas espécies de peixe elétrico, amolla a
faixa de eletrolocação do animal e o contraste
das imagens elétricas é aumentado conforme
o animal curva seu corpo e cauda ao redor dos
objetos de interesse.

As imagens elétricas são projeções bidi-
ensionais do ambiente sobre a superfície do
corpo do animal, o que pode ser então compa-
rado com a retina no domínio da visão. Os ele-
trorreceptores projetam-se somatotopicamente
em camadas nas unidades de ordem mais alta
no lobo da linha lateral, torus semicirculares
cerebelo (ver mais abaixo). Interações múti-
tas entre unidades adjacentes são acionadas
para o processamento da imagem elétrica e
deteção da forma. Os eletrorreceptores são
assim organizados em padrões de campos re-
ceptivos, os quais assemelham-se aos campos
receptivos visuais em termos de centros excit-
tatórios, vizinhanças inibidoras, sensibilidade
a movimentos unidirecionais etc. Parece que
a visão e a eletrolocação desenvolveram prín-
cípios semelhantes no processamento de ima-
gens bidimensionais do ambiente.

A eletrolocação assemelha-se à ecoloco-
cação no sentido em que o animal avalia seu am-
biente por uma retroalimentação continuau-
mente avaliada por suas próprias ações do que por
uma exploração passiva de fontes de energia
estranhas, como a luz solar. Necessitamos de
novas pesquisas sobre os parâmetros usados
na eletrolocação em várias espécies, os limi-
tes de utilidade em relação, por exemplo, com
a forma, tamanho, posição, movimento, con-
traste da água em condutância ohmica e a pre-
sença e geometria da reatância capacitativa.

Bullock et al.
Fig. 5 — Eletrolocação. A. Um peixe elétrico, flutuando entre dois bastões de plexiglas suspensos verticalmente (seção transversal à esquerda), segue um movimento sinusal, \(S(t) \) e \(S(t) + D \), por translação lateral do corpo \(F(t) \). Esta resposta é prejudicada e ocorrem frequentes colisões quanto menores forem os diâmetros \(\Phi \) dos bastões escolhidos. Todos os bastões são escondidos dentro do molde de agar para cancelar as diferenças nas informações mecânicas. Uma placa vertical de plexiglas em frente ao animal que flutua estabiliza sua posição entre os bastões oscilantes (diagrama à esquerda). As análises de Fourier da resposta de seguimento do animal \(F(t) \), revelam um forte componente na frequência dos estímulos, \(S(t) \), que é de 0,2 Hz em cada registro. A amplitude deste componente, relativa à amplitude de \(S(t) \), é chamada “ganho”, sua diferença de fase em relação a fase \(S(t) \) do “fase” nas últimas figuras (Heiligenberg, 1974). B. “Ganho” e “fase” da resposta de seguimento de *Eigenmannia* como uma função do diâmetro do bastão de plexiglas, numa frequência fixa de oscilação de 0,1 Hz e distância interna entre os bastões de 6 cm. O animal flutuou no centro do conjunto oscilante e portanto estava aproximadamente a 3 cm de cada bastão. Símbolos diferentes representam valores médios para espécies diferentes, as barras verticais representam desvios-padrões. Valores médios e desvios-padrões foram calculados a partir de distribuições bidimensionais de dados originais, representados no plano complexo, com ganho e fase como raio e ângulo, respectivamente (colocados mais acima, à direita). Desvio-padrão do ganho é definido como o desvio na direção radial, o desvio-padrão da fase é definido como perpendicular ao último (de Heiligenberg, 1973).
B. ELETROCOMUNICAÇÃO, INCLUINDO SINAIS ASSOCIADOS COM COMPORTAMENTO AGONÍSTICO

As descargas do órgão elétrico desempenham um importante papel na comunicação social. A identificação do sexo e da espécie frequentemente baseia-se nas características das descargas típicas da espécie e do sexo e o estado comportamental de um animal frequentemente se reflete nos modos particulares da atividade elétrica (Fig. 6).

Em Sternopygus, por exemplo, o estado fixo da frequência de DOE das fêmeas é aproximadamente um oitavo mais alto do que em machos, e estes respondem seletivamente às frequências da fêmea em experimentos com gravações. A resposta do macho consiste de breves elevações na frequência de DOE e curtas interrupções, e estes sinais por sua vez podem atrair fêmeas.

Em Gymnotus carapo, um indivíduo dominante assinala suas ameaças e intenções de ataque por características aumentos na taxa dos DOEs e por breves interrupções. O indivíduo dominante assinala sua submissão por uma longa interrupção (silêncio elétrico por cerca de dois segundos) e isto pode evitar um ataque.

Em Eigenmannia, interrupções curtas e elevações na frequência de DOE, assinalam um aumento na prontidão para o ataque em machos territoriais. Elevações graduais seguidas por um lento retorno na frequência de DOE assinalam um comportamento submissos. Séries de modulações na taxa de DOE acompanham os comportamentos de corte e territorial e podem servir a funções semelhantes à do canto dos pássaros. Sua função comunicativa é evidente pelo fato de que não apenas refletem certos estados comportamentais, mas também provocam respostas específicas em indivíduos da mesma espécie. Eigenmannia, Apteranotus e Sternopygus ignoram-se mutuamente, o que sugere um reconhecimento de espécies.

As espécies onduladores de alta frequência, os Apteranotidae, têm sido ao menos estudadas etologicamente e merecem atenção especial, parcialmente face ao fato de sua taxa de DOE ser tão alta (cerca de 800-2100) e tão extremamente regular (desvio-padrão dos intervalos durante épocas sem perturbação <0,1 μs), mas também porque existem tantas espécies e mesmo géneros com frequências fundamentais amplamente sobrepuestas. Já existem evidências de que elas se reconhecem mutuamente, na ausência habitual de interação agonística. Por exemplo, quando uma espécie intra-especificamente agressiva de Apteranotus é colocada em um aquário com Sternarchogiton sp., Sternarchorhamphus sp., ou Sternarchella sp., elas parecem ignorá-la mutuamente. Contudo, em uma série de experimentos, uma Sternarchorhynchus sp., foi persistentemente atacada. Em Apteranotus sp., o ataque foi eliciado por indivíduos da mesma espécie recentemente mortos, por uma imagem em um espelho ou por um indivíduo da mesma espécie vivo colocado atrás de uma chapa plástica transparente. O ataque geralmente acompanhado por “gorjeios” — fases transitórias muito breves (20-50ms), durante os quais a taxa de DOE aumenta de 100 ou mesmo 200 Hz; os gorjeios ocorrem muito esporadicamente até várias vezes em um segundo, mais comumente uma vez a cada poucos segundos no encontro agonístico. São raros em indivíduos isolados. Outras modulações de frequência em apteronotídeos são poucas e pequenas na porcentagem de mudança (1-2%), mais lentas ou durando por vários segundos e de significado social desconhecido; é mais provável que ocorram quando outros indivíduos da mesma espécie ou suas DOEs estejam presentes, e totalmente improváveis com perturbações mecânicas, alimento ou luz.

As diferenças entre espécies quanto as características espetrais e temporais de DOE e a seletividade associada dos eletroreceptores às DOEs das espécies, certamente aumentam o reconhecimento e a separação das espécies. Espécies simpáticas estreitamente relacionadas podem geralmente ser identificadas mais prontamente por suas DOEs do que pelas clássicas características morfológicas. As colorações do corpo servem primeiramente para a camuflagem do animal, não possuem nenhuma função da aviso na comunicação intra-específica e são muito variáveis. As ca-
racterísticas de DOE, provavelmente como con-
seguência de seu papel na comunicação so-
cial, apresentam considerável variabilidade en-
tre espécies, mas têm uma constância sur-
preendente dentro de cada espécie (Fig. 4).
Representam mais do que o canto do grilo co-
mo informações seguras para a identificação
das espécies.

![Diagramas](image)

Fig. 6 — Eletrocomunicação. Estão ilustrados não poucos exemplos de modulações de frequência da DOE de Gym-
notus carapo, associadas com o comportamento agonístico. A-C. Algumas estipulações agonísticas. A. Disposição
lateral antiparalela. B. Serpenteamento mútuo (as setas indicam as curvas dos corpos dos peixes). C. Disposição
frontal mútua. D, E. Atividade elétrica concomitante. D. Frequência instantânea das DOEs representada contra o
tempo. Exibições indicadas para o peixe n.º 1 (D) e n.º 2 (E). (de Black-Cleworth, 1970).
C. O PROBLEMA DA INTERFERÊNCIA DE DOES DE PEIXES VIZINHOS: UMA RESPOSTA DE ESQUIVA SALTANDO (RES)

Dois tipos completamente diferentes de interferência com a recepção de sinais podem ser distinguídos: um deles devido a fontes inanimadas de ruído, e.g. relâmpagos (Hopkins, 1973), e fluxos de potenciais (Kelman, 1974) e o outro devido a DOES de peixes vizinhos, especialmente os de outros indivíduos da mesma espécie. Daremos aqui atenção apenas ao problema da interferência de indivíduos da mesma espécie.

Particularmente na eletrolocação, a retroalimentação da DOE do próprio peixe é comumente contaminada pela DOE de outro peixe. Devemos esperar que existam mecanismos específicos que diminuam a interferência de sinal entre transmissores vizinhos.

A atuação da eletrolocação em espécies onduladoras foi medida durante a imposição de interferência controlada e mostrou-se mais vulnerável a sinais sinusoidais com frequências próximas à frequência fundamental da DOE do próprio animal. Espécies onduladoras melhoram sua atuação desviando a frequência de suas DOES de estímulos de frequência interferentes. Esta resposta de esquina saltando (RES) é encontrada apenas na espécie onduladora africana, Gymnarchus, e nas espécies onduladoras da América do Sul, tais como Eigenmannia e Apterorhynchus: em ambos os casos a RES serve para manter a capacidade de eletrolocação. A atuação da eletrolocação em espécies pulsadoras é mais vulnerável aos estímulos de pulsos que coincidem constantemente com a DOE do animal. As espécies pulsadoras melhoram sua atuação sincronizando suas DOES de tal modo que minimizam a possibilidade de coincidências com salvas de pulsos desconhecidos. Os mormírides africanos tendem a repetir as descargas de um indivíduo da mesma espécie em intervalos mais curtos do que o intervalo mínimo de DOE esperado de seu vizinho. As espécies pulsadoras da América do Sul, em contraste, disparam em intervalos mais regulares e deslocam a fase de suas salvas de pulso sempre que coincidências repetidas estejam iminentes.

Considerando que as espécies pulsadoras exigem portanto intervalos de tempo particulares, as espécies onduladoras parecem requerer faixas de frequência particulares para retroalimentação a curada. Isto não significa tão particular no sentido de que outro peixe não possa detectar uma dada DOE de um peixe ou que um determinado peixe possa ser seletivamente sensível apenas à sua própria DOE. Como veremos mais adiante, os receptores, embora afiados de modo que sejam mais sensíveis à frequência fundamental da DOE do próprio peixe, não são tão nítidamente seletivos que se tornem insensíveis a um peixe próximo, mesmo após a RES. Mas voltaremos ao significado fisiológico e ao mecanismo da RES quando considerarmos os receptores e o sistema nervoso central.

Neste ponto, vamos considerar o tipo de RES, primeiramente nas espécies pulsadoras.

Desde que a eletrolocação nas espécies pulsadoras é mais vulnerável a pulsos estranhos que coincidam com a DOE do próprio animal, o peixe elétrico deste tipo deve ser capaz de distinguir seu sinal eletroreceptivo de retroalimentação das descargas estranhas. Aparentemente, as espécies pulsadoras de mormírides e gimnotoides desenvolveram soluções diferentes para o mesmo problema: os mormírides parecem escolher a estimulação eletroreceptiva, por um sinal central subordinado a seu comando para a DOE, a fim de processar seletivamente a retroalimentação a partir de suas próprias DOES. As espécies pulsadoras de gimnotoides não possuem esta capacidade e, em vez disso, parecem identificar a retroalimentação escolhendo a estimulação eletroreceptiva marcada por sinais reafrentes dos receptores. Em algumas espécies, isto parece ser devido a receptores especiais de alto limiar que, sob condições normais, respondem apenas à DOE do próprio animal. Em outros casos, isto pode ser a estrutura habitual do campo da DOE do próprio animal, i.e., a imagem elétrica habitual do conjunto total de receptores que capacitam o peixe para distinguir sua própria DOE da DOE interferente de um outro peixe. Como os peixes elétricos da África e América do Sul evoluíram separa-
Fig. 7 — A Resposta de Esquiiva Saltando (RES) em Eigenmannia. A. Um peixe tentando escapar de estímulo que simula um vizinho, exceto que ele muda sinusoidalmente sua frequência. Os deslocamentos de esquiiva do peixe têm uma complexa sequência no tempo dependendo da faixa de variação particular da frequência do estímulo (aqui cerca de 380 — 408 Hz), sua modulação de frequência (aqui cerca de um ciclo em 20 segundos) e da amplitude e orientação do seu gradiente de voltagem. O estímulo efetivo é provavelmente a diferença de frequência ($\Delta F = F$ estímulo — F peixe) e isto está continuamente mudando. B. Um método estudado da RES enquanto se mantém o estímulo (ΔF constante). Um circuito que corrige automaticamente a diferença de frequência monitora as mudanças do peixe na frequência e controla o estímulo para manter uma diferença constante de cerca de $+4$ Hz por 25 segundo, depois -4 Hz por 25 segundo e assim por diante. O peixe tenta aumentar a diferença mas não desloca mais do que uma poucos Hz antes de fixar-se num patê; isto depende da voltagem e orientação do estímulo. C. Os componentes principais deste comportamento (de Bullock et al., 1972 a, b).
damente, eles podem ter resolvido vários destes problemas comuns de maneiras diferentes.

Os peixes pulsadores da América do Sul respondem tipicamente à interferência causada pela DOE de um peixe vizinho com uma aceleração ou, menos frequentemente, uma desaceleração na taxa de repetição dos pulsos. Podem manter uma taxa diferente e assim reduzir a chance de pulsos coincidentes. Apenas uma série de várias coincidências consecutivas é grave em termos de prejuízo na detecção de objetos, e basta manter os pulsos estranhos a poucos milissegundos da coincidência.

Espécies onduladoras enfrentam um problema diferente, visto que toda outra descarga em forma de onda irá interferir com a DOE do peixe para formar um batimento numa frequência diferente (ΔF). Para manter a capacidade de eletrolocação, aparentemente é suficiente manter o ΔF acima de cerca de 10 Hz. A RES nas espécies onduladoras varia desde uma tendência simétrica: para aumentar a frequência de DOE na presença de um baixo −ΔF e diminuir a frequência de DOE na presença de um baixo +ΔF, até uma onda assimétrica sobre um desses dois danos, negligencando a outra. A maioria dos indivíduos de *Eigenmannia* tendem a ser simétricos. *Apterorhynchus* responde tipicamente apenas ao −ΔF, deslocando a frequência para cima; depois retorna em resposta ao +ΔF ou para a remoção do estímulo. A RES é graduada com a intensidade do estímulo (normalmente a proximidade do vizinho) e com o ΔF, e máxima um ΔF de cerca de 4 Hz, tanto em *Eigenmannia* quanto em *Apterorhynchus*. Possui um teto e um mínimo, isto é, o peixe não se afasta muito de sua frequência normal de DOE; geralmente a alteração máxima é de 5 a 15 Hz. A constante de tempo é lenta; após um rápido início de 0,15-0,2 segundos (o que é tão rápido quanto o reflexo humano de afastamento de um estímulo doloroso), a RES total é alcançada apenas após algumas dezenas de segundos. Daí em diante, ela pode ser mantida tonicamente na presença do ΔF. O peixe não foge espacialmente, i.e., move-se para longe da proximidade dos vizinhos em associação com a RES. Algumas espécies são territoriais e espaçam-se mutuamente mesmo que suas frequências não sejam próximas. Outras são gregárias e permanecem juntas mesmo que suas frequências sejam muito próximas. Desde que a variação natural da taxa da DOE nas espécies induzoras estende-se sobre várias centenas de Hz, e apenas vizinhos em cerca de 10 Hz causem uma RES, a maioria dos peixes não induz RES uns nos outros.

D. CONTROLE DA MANUTENÇÃO DA POSIÇÃO

Está bem estabelecido que a posição de muitos animais não é exclusivamente guiada pelo sentido gravitacional, o qual é comumente referido como "sentido do equilíbrio". A maioria dos invertebrados e vertebrados também se baseia em estimulações em outros sistemas sensoriais, como os olhos e a mecanorrecepção, para ajustar sua orientação do corpo no espaço. Várias espécies de peixes de recifes, por exemplo, inclinam-se, em relação ao eixo-longitudinal do corpo, quando nadam paralelamente a um rochedo submerso, de tal modo que o lado ventral do corpo fica mais próximo à superfície vertical do substrato; o grau de inclinação depende da distância entre o peixe e o rochedo. Esta Resposta Ventral ao Substrato (RVS), que é guiada pela informação visual em muitas espécies, demonstra que a presença de um objeto nas proximidades de um peixe pode influenciar o seu controle de posição.

Uma Resposta Ventral do Substrato também foi encontrada em *Eigenmannia*, um peixe fracamente elétrico. É guiada pelo sentido elétrico destes animais e portanto depende do órgão da linha lateral, o qual filogeneticamente está estreitamente relacionado ao sistema vestibular. Entre outros aspectos sobre como o sistema eletroresponsório é usado como sistema de orientação, é necessário também discutir-se o significado deste sistema para o controle do equilíbrio. O sistema eletroresponsório tem a função de ajustar a posição do peixe em relação à orientação espacial dos objetos no habitat do animal. Os experimentos seguintes elucidaram este mecanismo: se um *Eigenmannia* que foi cegado flutua a uma distância...
equivalente à altura de um corpo acima de uma placas de plexiglas inclinada de 45°, uma resposta de inclinação (rotação) do cerca de 30° é observada (Fig. 8A). Esta RVS, em relação ao eixo de rotação, é denominada RVSe. Substituindo-se a placas de plexiglas isolada (eletricamente visível) por uma placas de agar, a qual é mais ou menos eletricamente transparente, é provocada uma resposta de inclinação fortemente reduzida (Fig. 8B). Isso demonstra a relevância das informações elétricas para RVS em *Eigenmannia*.

Além da RVS em relação ao eixo de rotação, outras respostas também ocorrem em relação ao eixo de inclinação (Fig. 8C e D). Se o peixe estiver orientado com seu plano sagital na vertical e perpendicular à placa de plexiglas de 45°, observa-se uma VSR no plano vertical. Se o peixe estiver flutuando acima da placa, com a cabeça voltada para ela, isso resulta numa resposta de inclinação para cima (RVSe). As medidas dos desvios da cabeça e cauda do horizontal são muito diferentes (Fig. 8C). Quando orientado na direção contrária à placa, o peixe exibe uma resposta de inclinação para baixo (RVSeb). Neste caso, os ajustes da cabeça e cauda são semelhantes (Fig. 8D). Novamente os desvios do horizontal são muito menores com uma placas de agar, mais ou menos transparente eletricamente.

Estas observações demonstram que a posição de flutuação de *Eigenmannia* depende da orientação do fundo ou do objeto que está próximo ao peixe. Contudo permanece obscuro o por quê destes animais terem desenvolvido um tal mecanismo de controle de posição. É provável que as observações no campo possam esclarecer um pouco mais a respeito do significado deste padrão de comportamento para *Eigenmannia* em seu habitat normal. Tem sido sugerido que a RVS de certos peixes de recife, guiada visualmente, facilitaria a camuflagem e a obtenção de alimento do substrato. Possivelmente vantagens do mesmo tipo resultam deste comportamento em *Eigenmannia*.

E. RÍTMOS CIRCADIANOS: PERÍODOS ATIVOS “VERSUS” PERÍODOS INATIVOS

Observações gerais na natureza corroboraram a asserção de que a atividade locomotor-
ra e frequência de DOE dos gimnotóides em geral são maiores, durante a noite e menores durante o dia. Esta característica é adaptativa para a sobrevivência, em relação aos predadores que não possuem sentidos especiais para a orientação e captura de presas noturnas.

Fig. 8 — A Resposta Ventral ao Substrato (RVS). *Eigenmannia virescens* mostra mudanças de posição em resposta a objetos no ambiente. Este comportamento garante uma orientação do corpo na qual o lado ventral do mesmo fica mais próximo ao substrato quando o peixe nada perto dele. A RVS é guiada pelo sentido elétrico e assim permanece após a caçoeira. Os dados seguintes foram obtidos destes espécimes. A) Enquanto flutua acima de uma placas de plexiglas inclinado de 45°, um *Eigenmannia* cega exibe uma inclinação média de 30° (¿) em relação ao eixo de rotação (RVS). B) Esta resposta de inclinação é fortemente reduzida se a placa de plexiglas é substituída por uma placas de agar mais ou menos transparente eletricamente. As RVS em relação ao eixo de inclinação (C) inclinação para cima; O inclinação para baixo) são mostradas na parte inferior da figura. As medidas foram tomadas para a posição da cabeça (¿) e da cauda (¿¿) tanto na situação de inclinação para cima (RVSe) quanto na de inclinação para baixo (RVSeb). Os dados numéricos foram baseados em 8 espécimes (de Meyer, original).
nas. Assim, alguns desses predadores são encontrados sobre o fundo durante esse período. Hypopomus artedi, Eigenmannia virescens, Sternoptychus macrurus e Gymnotus carapo escondem-se durante o dia entre a vegetação das margens, no fundo arenoso ou lodoso ou em manchas de vegetação como cabomba, pístis, lírios aquáticos, vitória-régia etc. No crépusculo vespertino, a última espécie de peixes saem mais pontualmente para água aberta. Sua volta à margem é verificada na manhã seguinte. Eigenmannia chega mais cedo ou mais tarde, logo após o nascer do sol, dependendo do local, e Gymnotus carapo um pouco antes do nascer do dia. Staetogenys elegans tem uma atividade natatória que é melhor sincronizada pela iluminação: assim, sob luz artificial, ele fica deitado de lado sobre o fundo, como uma folha morta, e sob condições de escuridão, ele nada ativamente. O ritmo do DOE de Sternoptychus macrurus apresenta aumentos transitórios durante a noite. As atividades de DOE de algumas gimnotóides mudam durante a noite como pode ser visto na Tabela 1. A sobreposição de frequências interspécífica pode ocorrer durante o dia, quando os peixes estão inativos, visto que, durante a noite, é mais provável que seus ritmos possam diferir. Assim, embora Gymnorhamphichthys hypostomus e Hypopomus artedi tenham freqüências semelhantes, durante o dia, eles diferem na noite; a do H. artedi aumenta de 2 a 3 vezes, e a do G. hypostomus de 6 a 7 vezes. R. rostratus aumenta sua frequência de DOE, sua atividade de nado e o tempo que passa na posição vertical com a nadadeira ventral em contato com o fundo durante a noite.

Gymnorhamphichthys possui o mais acen-
tuado contraste entre atividade diurna e no-
turna de todos os peixes elétricos até agora estudados. Durante o dia, ele permanece comple-
tamente enterrado no fundo de areia grossa de igarapés claros, imóvel e descarrelando seu órgão elétrico numa baixa taxa (10-15 por segundo). Emergindo muito abruptamente uns 25-40 min, após o pôr-do-sol, a frequência de DOE eleva-se instantaneamente a um nível alto (70-120 por segundo), mantido durante o período ativo. Este, normalmente, termina quando o peixe repentinamente se enterra na areia, tipicamente entre 03h20 min e 05h00min. Esta é a única espécie de peixe elétrico que demonstrou sustentar um ritmo circadiano sob condições estáveis e luminosidade fraca constante. O período é então próximo, mas não exatamente, de 24 horas e varia com nível de luminosidade. Num ciclo natural de luminosidade diurna-noturna ele é de exatamente 24 horas.

TABELA 1 — Gimnotoides encontrados na região de Manaus, Amazonas, e sua taxa de repetição de descarga do órgão elétrico (DOE). As espécies são grupadas de acordo com a forma de onda da descarga como ou “espécies pulsadoras” ou “espécies onduladoras” (Ver capítulo V para definições). Medidas feitas por W. Heiligenberg and J. Bastian em Novembro, 1976, exu estiver especificado. Identificações supostas.

<table>
<thead>
<tr>
<th>ESPECIES PULSADORAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espécie</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Em águas negras do sistema do rio Negro, Anavilhanas, Teruma Grande, Teruma Mirim, Culeiras, pH 4-5, resistividade 100-150 kgc.m</td>
</tr>
<tr>
<td>1. Hypopomus sp. 1a</td>
</tr>
<tr>
<td>2. Hypopomus sp. 2</td>
</tr>
<tr>
<td>3. Hypopomus sp. 3</td>
</tr>
<tr>
<td>4. Hypopomus sp. 4</td>
</tr>
<tr>
<td>5. Hypopomus sp. 5</td>
</tr>
<tr>
<td>6. Hypopygus sp. b</td>
</tr>
<tr>
<td>Em águas claras do lago Januacá e Rio Solimões, pH 7, resistividade 12-13 kgc.m</td>
</tr>
<tr>
<td>7. Hypopomus sp. 3c</td>
</tr>
<tr>
<td>8. Staetogenys elegans e</td>
</tr>
<tr>
<td>9. Rhambichthys rostratus e</td>
</tr>
<tr>
<td>Em águas negras do rio Negro próximas à confluição do rio Branco; captado sobre fundo arenoso a 7-20 m de profundidade, rochas submersas dispersas; vegetação no fundo esparsa. Muitas amostras colhidas em março-maio, 1967 examinadas no barco de pesquisa Scrippa ALPHA HELIX por A. B. Steinbach, M. V. L. Bennett, T. Szabo e T. H. Bullock.</td>
</tr>
<tr>
<td>10. Gymnorhamphichthys sp. f</td>
</tr>
<tr>
<td>11. Gymnotus carapo</td>
</tr>
<tr>
<td>Também # 8 e 9 acima.</td>
</tr>
</tbody>
</table>

Bullock et al.
ESPECIES ONDULADORAS

Em águas claras do rio Solimões, pH 7, resistividade de 12-13 kΩcm.

12. Sternopygus macrurus 60 — 150
13. Eigenmannia macrops 430 — 660
14. Eigenmannia sp. 1 580 — 1000
possivelmente E. troscheli ou Rhadobolichops sp.
15. Eigenmannia sp. 2 180 — 250
(focinho pontudo)
16. Adontosternarchus sp 1 950 — 1250
(corpo manchado)
17. Adontosternarchus sp 2 710 — 1330
(corpo uniformemente cinza escuro)
18. Apterorhynchus anas 1060 — 1250
19. Sternarchella sp. 1080 — 1170
20. Sternarchorhynchus oxyrhynchus 1400 — 1800
21. Porotherus sp. (não foi gravada)
22. Sternarchorhamphus müllerii 740 — 973

Em águas negras do rio Negro próximo a confluência do rio Branco (Ver acima).

23. Sternarchella sp. 904 — 1384
24. Sternarchella sp. ca. 2100
25. Sternarchogiton sp. 889 — 1241
26. Apterorhynchus sp. 900 — 1100
Também ≠ 12, 13 (sp.:1, 16, 20, 22.

Eletrorrecepção

Experimentos inequivocos na discriminação comportamental que podem ser realizadas só pela detecção de distorção do campo elétrico (Lissmann, 1958) predizem a existência de eletrorreceptores. Órgãos de sentido especiais para essa nova modalidade foram realmente encontrados e provados fisiologicamente no sistema da linha lateral de peixes gprimotídeos, mormóridos e de elasmobrânquios. Um apanhado da descoberta e prova da função destes receptores é dada por Bullock (1974) e resumos mais detalhados de sua anatomia, fisiologia e funções comportamentais são dados em Fessard (1974).

Em resumo, estes órgãos são considerados como derivados especializados do sistema de receptores da linha lateral, que normalmente respondem a correntes elétricas. Essas correntes podem ser ou da própria troca do peixe ou de outras fontes animadas ou inanimadas. Eletrorreceptores existem não só nos grupos mencionados acima, como também nos silurídeos, braquiupídeos (Polyodon, o “spoon bill” e Scaphirhynchus, o esturjão) e provavelmente em alguns outros grupos.

Existem duas grandes classes e várias subclasses destes órgãos de sentido. As grandes classes de eletrorreceptores são (a) bulbosos ou sensíveis à baixa frequência e (b) tuberosos ou sensíveis à alta frequência (Fig. 9). Os primeiros existem em todos os grupos de peixes já citados, os últimos ocorrem apenas nos teleósteos elétricos, i.e., aqueles com órgãos elétricos.

Os receptores bulbosos são os mais sensíveis, especialmente dos especies marinhas, onde o forte curto-circuito da água de alta condutibilidade torna o sinal fraco. São usados primariamente para detectar corrente contínua ou as lentas mudanças nos campos elétricos da presa (Fig. 10) e das fontes inanimadas. Uma destes é a corrente induzida pelo movimento das massas de água, como as correntes marinhas, através do campo magnético da terra, (Kalmijn, 1974). Estes receptores são os mais sensíveis às correntes elétricas, variando um equivalente a cerca de 1-10 Hz, dependendo da espécie.

Aspectos do...
Os receptores tuberosos são de pelo menos 3 ou 4 subclasses, baseando-se no modo pelo qual eles codificam as diferenças de intensidade. Provavelmente alguns são primariamente detectores da DOE do próprio peixe, outros são usados primariamente na eletrocomunicação — detectando as DOEs de outros membros da mesma espécie. Os receptores tuberosos são os mais sensíveis às flutuações das correntes elétricas de cerca de 100-1.000 Hz, dependendo da espécie e mesmo do indivíduo.

Em espécies onduladoras como *Eigenmannia* (DOE de cerca de 300 Hz), cada peixe tem sua própria frequência de DOE normalmente preferida, dentro da variação da espécie, que pode ser 200 Hz ou mais. Os receptores de um determinado peixe são mais sensíveis às frequências próximas a sua própria taxa de

Fig. 9 — Eletorreceptores. Representações esquemáticas de vários tipos de receptores bulbosos e tuberosos. A-H, as células ciliares modificadas ou células sensoriais secundárias, que se criam ao redor das células sensivas. I, J, órgãos do sentido inteiro mostrando a disposição das células sensoriais e sua ineração. A, ampola de Lorenzini dos elasmobrânquios; B-D, órgãos bulbosos dos teleósteos, incluindo gímnotoídeos; E, um tipo especial de órgão tuberoso em Mormyridae chamado "mormyromast" sc; F, um órgão em Gymnarchidae chamado "gymnarchomast" II; G, "gymnarchomast" I; H, "mormyromast" sc; I, órgão bulboso em gímnotoíde; J, órgão tuberoso em gímnotoíde, n, terminação nervosa mielinada (terminações nervosas em I, pretas, em J, brancas); sc, células sensoriais; camadas de pele indicadas por tipos diferentes de pontilhados (de Szabo, 1974).

Fig. 10 — Uso da eletrorecepção por um elasmobrânquio. Experimentos com um tubarão, *Scyliorhinus canicula*, mostram que a resposta ao alimento pode ser guiado por correntes elétricas fracas, de frequência muito baixa (cerca de 1 Hz) de um peixe presa (o "flatfish", *Periophthalmus plebeus*) ou de eletrodos na areia (a) o mergulho normal, acuradamente dirigido a um "flatfish" enterrado na areia, b) disto persiste mesmo se o peixe for coberto por uma capa de agarrar elétricamente transparente. c) o odor, quando exagerado pelo retalhamento da presa, leva a busca não direcionada rio abaixo (d) um filme plástico, elétricamente opaco, impede a resposta. (e) eletrodos que simulam o campo bioelétrico de baixa frequência de um "flatfish" são estratificados. (f) eletrodos (apenas um é mostrado) são localmente mais atvattivos do que um pedaço de peixe (de Kalmijn, 1971).
DOE. A sensibilidade oscila tanto acima quanto abaixo desta "melhor frequência", i.e., os receptores são sintonizados, como filtros passa-banda.

O cérebro desenvolveu sistemas receptores e processadores especializados para a estimulação macica dos numerosos receptores. Estes são modificações dos antigos centros da linha lateral. Incluem estruturas nos lobos da linha lateral no bulbo, no cerebelo e no torus semicirculares do mesencéfalo. Estas estruturas são extremamente grandes e altamente diferenciadas nos peixes gimnotóides e mormirídeos. As vias dos eletroreceptores também se projetam no telencéfalo. O cerebelo é excepcionalmente grande, não apenas nos peixes elétricos, mas também nos eletrombrânquios, em geral, e em muitos silurídeos. Existe uma certa evidência de que isto esteja em conexão com a eletrorecepção, mas as informações são ainda insuficientes.

Muitos neurônios altamente especializados existem nos lobos da linha lateral, no torus semicirculares e no cerebelo dos gimnotóides e respondem aos sinais, derivados de correntes elétricas e possuidores de padrões altamente específicos. Por exemplo, um tipo de neurônio apenas responde à presença de um outro peixe elétrico da mesma espécie, com uma taxa do DOE que seja ligeiramente maior — não muito — do que a taxa de DOE do próprio peixe (Fig. 11). No cerebelo, certos neurônios respondem apenas quando a estimulação eletroreceptiva vem de um objeto que esteja se movendo em uma certa direção na água próxima ao peixe. Assim, parece que eletrolocalização e a eletrocomunicação servem por sistemas distintos de analisadores centrais que são responsáveis por aspectos diferentes da estimulação do conjunto de receptores na pele.

Finalmente, é suposto que o sistema da linha lateral tenha evoluído, entre seus componentes especializados, uma parte na cóclea dos vertebrados superiores. Assim, a pesquisa de eletrorecepção oferece uma oportunidade especial para desenvolver uma abordagem comparativa ao estudo de nosso próprio ouvido interno, incluindo o órgão auditivo. É impressionante que a sintonia das fibras dos nervos aferentes dos eletroreceptores tuberosos em Eigenmannia é tão seletiva como a das fibras do nervo coclear de mamíferos que têm a mesma frequência ótima, embora a sintonia deste seja considerada derivada principalmente das propriedades mecânicas do ouvido.

Possíveis significados ecológico e prático

Grandes oportunidades existem para a compreensão fundamental a respeito da biologia dos gimnotóides e outro peixe eletroreceptivo. Enquanto cada um dos capítulos anteriores apresenta importantes questões não resolvidas, à espera de novos trabalhos, talvez o tópico mais oportuno e aberto seja a biologia de campo de espécies individuais e o papel dos gimnotóides na comunidade.

A julgar pelas amostras coletadas no Amazonas, utilizando métodos que capturam todos os peixes em várias dezenas de metros cúbicos de água, membros de grupo podem frequentemente dominar a ictiofauna. Parece provável que os gimnotóides sejam a principal fonte de alimento para os grandes predadores. Isso merece um estudo quantitativo. Se somarmos os silurídeos e eletroreceptivos, embora não elétricos, abrangendo pelo menos 9 famílias diversificadas na América do Sul e que representam uma 40% da relação das espécies, esta idéia parece importante na ecologia total.

Um significado prático é que deve valer a pena testar-se estes peixes como marcadores. Desde que a DOE é contínua noite e dia, (mas com paradas de poucos segundos como sinais em encontros agonísticos), estes animais oferecem uma oportunidade única. Um amplificador transistorizado portátil e um par de fios em um bastão permitem que se diga, com um alto grau de segurança, se existe glimnotóides (ou na África, mormirídeos ou gimmarúdeos) em um certo volume de água — sem a necessidade de capturar ou mesmo ver o peixe. Pode fazer-se um censo, realizando-se um trajeto numa profundidade escolhida. A ausência de ruidos ou zumbidos é uma evidência fortemente positiva da ausência de qualquer membro desta superfamília. A eficiência desta técnica é acompanhada pela limitação devido ao rápido declínio na amplitude do campo elétrico com distância num conductor de volume. Na prática, pode geralmente
detectar-se qualquer gimnotóide numa distância de meio metro (um pouco menos para *Sternopygus*), usando-se um aperrelo de um único canal e eletrôdios separados por poucos centímetros. Uma rede de eletrôdios pode ser conveniente para fins especiais. Uma limitação inerente é que, sem coleta de amostras, existe geralmente alguma alguma grandeza nas espécies e mesmo gêneros. Seis ou sete tipos de DOE podem frequentemente ser distinguidos no campo, pelo ouvido (simplesmente amplificando e convertendo as descargas em sons), ao passo que mais de 12 ou 15 espécies de gimnotóides podem ser, às vezes, coletadas num espaço de poucos metros.

Em várias espécies, foram registrados movimentos, e.g. migração diurna de água rasa entre plantas, para a água aberta longe da margem em um grande rio, o rio Negro. Maior movimento com a inundação sazonal da floresta e eventual diminuição do nível da água (de mais de 10 metros) e retração dos habitats aquáticos, podem ser acompanhados pela amostragem de DOEs, talvez mais fácil.

Fig. 11 — Processamento nervoso central da estimulação do elctorreceptor. O diagrama mostra os componentes de um esquema dos passos sucessivos na Resposta de Esquiva Saltando (RES) em *Eigenmannia*. A descarga do órgão elétrico (DOE) é comandada pelo nulceo marco-passo (MP) fisiologicamente uma única unidade. O estímulo inicia a descarga de um vózinho. *Eigenmannia* de uma frequência ligeiramente diferente, causando batimentos. Estas são de forma assimétrica porque a DOE não é sinusoidal; esta assimetria é essencial para a capacidade dos neurônios de distinguir corretamente entre +ΔF e −ΔF, i.e. se a frequência do vózinho é maior ou menor, e portanto a RES deve aumentar ou baixar. Os pequenos círculos representam tipos de neurônios geralmente encontrados nos níveis do sistema nervoso indicado (lob. lat. = lóbus lateralis do bulbo; torus = torus semicircularis do mesencéfalo). Outros tipos estão sem dúvida envolvidos também e a figura mostra apenas uma metade do esquema. As fibras aferentes periféricas do tipo P têm uma maior probabilidade de disparar uma vez cada ciclo de DOE numa certa parte do ciclo de batimento. Esta parte é diferente para +ΔF e −ΔF em uma subclasse, as unidades P₁, mas não é diferente em outra subclasse, as unidades P₂, como mostrado no histograma de sua taxa de descarga. A convergência destes no torus explica a capacidade das unidades ΔF para asinalar o sinal do ΔF e controlar a direção de deslocamento de MP. (de Scheich & Bullock, 1974).
ou extensamente do que por métodos tradicionais. Tanto os movimentos microgeográficos — até centímetros, quanto a distribuição microgeográfica apresentam oportunidades de solução pela amostragem da população elétrica. Parece possível que conjuntos particulares de espécies, incluindo plantas e peixes maiores, possam viver juntos, mas podem não ser constatáveis sem amostragem por captação. O conjunto de gimnotóides pode ser marcador para a grande comunidade; eles podem ser conhecidos por amostragem eletrônica, mesmo que alguma ambiguidade relativa as espécies possa permanecer no campo.

Os numerosos géneros e espécies de gimnotóides, sem dúvida, incluem generalistas e especialistas, e.g. em hábitos alimentares, em exigências ecológicas e biologia da reprodução. Em vista das razões já mencionadas para o valor especial da melhor compreensão deste grupo, é altamente desejável aprender mais sobre as características destas espécies, em estudo correlacionado de campo e laboratório. Alguns passos já foram dados com a bem sucedida reprodução de *Eigennannia virenses* em laboratório (Kirschbaum, 1975), com a análise de conteúdo estomacal de uns poucos gimnotóides (Knöppel, 1970) e com os minuciosos estudos de campo de algumas poucas espécies (Hopkins, 1974 a,b,c; Schwassmann, 1971; Heiligenberg & Bastian, 1977 e Hopkins & Heiligenberg, 1977).

No que concerne ao grande subgrupo de peixes eletrorreceptivos que não são elétricos, o significado ecológico deve ser enorme. Empregando apenas receptores sensíveis à baixa frequência, tanto quanto sabemos, eles operam principalmente de modo passivo, detectando fontes de correntes estranhas, como a presa. Outras fontes podem ser normalmente importantes, incluindo o próprio corpo do peixe receptor. Estamos falando aqui de vários grupos não relacionados, alguns ainda incertos, mas principalmente de alasmobrânquios e siluróides.

Na América do Sul, a raia de água doce é localmente abundante e uma grande praga para pescadores e banhistas. Ocorrência de vários tubarões eurhinoideos são ocasionais em pescarias. De muito maior importância, contudo, é o grande grupo dos siluróides, por seu vasto número tanto de espécies quanto de indivíduos. Muitas espécies comercialmente importantes são siluróides.

As oportunidades para pesquisas desses grupos são certamente muito diferentes daqueles de grupos que possuem descarga de órgão elétrico. Os estudos referentes ao papel da eletrorrecepção na etologia de alguns dos diversos "catfishes" são importantes para a compreensão do seu significado ecológico.

AGRADECIMENTOS

A colaboração dos autores neste trabalho foi ajudada pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), a Universidade Federal de Minas Gerais, a Deutsche Forschungsgemeinschaft, a Technische Hochschule, Darmstadt, a Universidade de Göttingen, a Universidade da Califórnia, San Diego, à Fundação Nacional de Ciências e o Instituto Nacional de Saúde, E.U.A.. Os autores expressam seu agradecimento especial ao Dr. Warwick Kerr e ao pessoal do Instituto Nacional de Pesquisas da Amazônia, Manaus, especialmente aqueles do Departamento de Ictiologia, pela hospitalidade extremamente proveitosa.

SUMMARY

An overview of the families, genera and some species of the Gymnotoidei is presented with a review of their behaviour and natural history. Characteristics of the electric organs and electric organ discharge (EOD) for various species are presented. The role of EOD on the animal’s life is discussed, especially as it relates to behaviour and other events. Electrorception, its special sense organs and brain-processing, including use by non-electric fish is discussed. The results of these studies are interpreted in terms of their practical and ecological significance in the life of this group of fish.

BIBLIOGRAFIA

BATES, M.

BENNETT, M. V. L.

BLACK-CLEWORTH, P.

BULLOCK, T. H.

BULLOCK, T. H.; HAMSTRA, Jr., R. H. & SCHEICH, H.

Fessard, A.

HAGIWARA, S. & MORITA, H.

HEILIGENBERG, W.

HEILIGENBERG, W. & BARTIAN, J.

HOPKINS, C. D.

HOPKINS, C. D. & HEILIGENBERG, W.

KALMijn, A. J.
1974 — The role of electroreceptors in the animal’s life. The detection of electric fields from inanimate and animate sources other than electric organs. In: Handbook of Sensory Physiology, 3(3) New York, Springer-Verlag.

KIRSCHBAUM, F.
1975 — Environmental factors control the periodical reproduction of tropical electric fish. Experientia, 31: 1158-1160.

KÖPPEN, H. A.

LISSMANN, H. W.

LISSMANN, H. W. & SCHASSMANN, H. O.

MAGO-LECcia, F.

SCHEICH, H. & BULLOCK, T. H.

SCHEISSMANN, H. O.

STENRA, G.

SZABO, T.

(Aceito para publicação em 22/02/79)